
Using SPAdes De Novo Assembler
Andrey Prjibelski,1,4 Dmitry Antipov,1,4 Dmitry Meleshko,1,4

Alla Lapidus,1,2,4 and Anton Korobeynikov1,3,5

1Center for Algorithmic Biotechnologies, Saint Petersburg State University, Saint
Petersburg, Russia

2Department of Cytology and Histology, Saint Petersburg State University, Saint
Petersburg, Russia

3Department of Statistical Modelling, Saint Petersburg State University, Saint Petersburg,
Russia

4Contributed equally
5Corresponding author: a.korobeynikov@spbu.ru

SPAdes—St. Petersburg genome Assembler—was originally developed for de
novo assembly of genome sequencing data produced for cultivated microbial
isolates and for single-cell genomic DNA sequencing. With time, the function-
ality of SPAdes was extended to enable assembly of IonTorrent data, as well as
hybrid assembly from short and long reads (PacBio and Oxford Nanopore). In
this article we present protocols for five different assembly pipelines that com-
prise the SPAdes package and that are used for assembly of metagenomes and
transcriptomes as well as assembly of putative plasmids and biosynthetic gene
clusters from whole-genome sequencing and metagenomic datasets. In addi-
tion, we present guidelines for understanding results with use cases for each
pipeline, and several additional support protocols that help in using SPAdes
properly. © 2020 Wiley Periodicals LLC.

Basic Protocol 1: Assembling isolate bacterial datasets
Basic Protocol 2: Assembling metagenomic datasets
Basic Protocol 3: Assembling sets of putative plasmids
Basic Protocol 4: Assembling transcriptomes
Basic Protocol 5: Assembling putative biosynthetic gene clusters
Support Protocol 1: Installing SPAdes
Support Protocol 2: Providing input via command line
Support Protocol 3: Providing input data via YAML format
Support Protocol 4: Restarting previous run
Support Protocol 5: Determining strand-specificity of RNA-seq data

Keywords: biosynthetic gene clusters � de novo assembly � genome assembly
� metagenomes � plasmids � transcriptome

How to cite this article:
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., &

Korobeynikov, A. (2020). Using SPAdes de novo assembler.
Current Protocols in Bioinformatics, 70, e102. doi:

10.1002/cpbi.102

INTRODUCTION

Similar to any other de novo sequence assembly software, SPAdes (Nurk et al., 2013)
aims to build continuous and accurate sequences (often referred to as contigs and
scaffolds) from short reads. Initially, SPAdes was designed for assembly of bacterial
genomes from short Illumina reads, obtained via single-cell MDA (Lasken, 2007) or
conventional isolate sequencing. Further on, SPAdes was adapted for the assembly of

Current Protocols in Bioinformatics e102, Volume 70
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpbi.102
© 2020 Wiley Periodicals LLC

Prjibelski et al.

1 of 29

https://doi.org/10.1002/cpbi.102
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpbi.102&domain=pdf&date_stamp=2020-06-19


bacterial metagenomes (Nurk, Meleshko, Korobeynikov, & Pevzner, 2017), eukaryotic
transcriptomes (Bushmanova, Antipov, Lapidus, & Prjibelski, 2019), and small eukary-
otic genomes. Also, the SPAdes package contains pipelines for assembly of putative plas-
mids (Antipov et al., 2016, 2019) and biosynthetic gene clusters (Meleshko et al., 2019)
from whole-genome or metagenomic sequencing data.

In addition to single, paired-end, and mate-pair Illumina reads (Prjibelski et al., 2014;
Vasilinetc, Prjibelski, Gurevich, Korobeynikov, & Pevzner, 2015), the current version
of SPAdes is capable of assembling IonTorrent data (Ershov, Tarasov, Lapidus, & Ko-
robeynikov, 2019), as well as performing hybrid assembly that combines short accurate
reads with long error-prone reads (Antipov, Korobeynikov, McLean, & Pevzner, 2015),
such as PacBio and Oxford Nanopores.

SPAdes starts its assembly pipeline by constructing a de Bruijn graph from short reads.
Further, the constructed graph undergoes a simplification procedure that involves removal
of erroneous edges. Such edges are typically caused by sequencing errors or artifacts.
Once the assembly graph is simplified, SPAdes maps short paired and long reads (if
available) back to the assembly graph using this alignment information to perform repeat
resolution and scaffolding via the exSPAder module (Prjibelski et al., 2014), which aims
to construct correct and continuous paths for the genome being assembled in the assembly
graph.

Here we describe five basic protocols for the main implemented SPAdes pipelines, as
well as several support protocols. The main pipeline for assembly of isolate bacterial
data is presented in Basic Protocol 1. Basic Protocol 2 describes the metagenome assem-
bly workflow. Basic Protocol 3 contains information on assembly of putative plasmids
from whole-genome shotgun (WGS) and metagenomic data. Basic Protocol 4 includes
guidelines for de novo transcriptome assembly. Finally, Basic Protocol 5 is dedicated to
the discovery of putative biosynthetic gene clusters. Information about the resulting files
produced by each pipeline is presented in the corresponding sections in Guidelines for
Understanding Results. The SPAdes installation process is described in Support Proto-
col 1. Other support protocols describe the specification of SPAdes input via command
line (Support Protocol 2) and such features as using a YAML file for providing input
data (Support Protocol 3), restarting previous runs (Support Protocol 4), and determin-
ing strand specificity of RNA-seq data (Support Protocol 5). The set of supported options
and examples of output is given for SPAdes version 3.14.

STRATEGIC PLANNING

Resource Planning

The process of genome, metagenome, and transcriptome assembly may require lots of
computational, memory and disk resources depending on the input dataset. Many factors
contribute to this including genome size, sequencing error rate, repeat content and com-
plexity of a (meta-)genome, and sequencing depth among, others. Unfortunately, many
of these properties are not known in advance and it is possible to derive only very rough
estimates. Typically, the assembly process of an isolate bacterial dataset requires several
gigabytes of RAM and disk space; a small eukaryotic dataset may require from 10 to 50
Gb of RAM, and assembly of large metagenomes and metatranscriptomes could easily
utilize hundreds gigabytes of RAM and disk space. Thus, the provided guidelines are
very rough and could vary significantly depending on the particular dataset.

Quality Control

The quality of input data is crucial for both the success of the assembly job and the
quality of the final result. Prior to assembly one needs to perform the necessary qualityPrjibelski et al.

2 of 29

Current Protocols in Bioinformatics



control (QC) steps to ensure that the input read files are free from sequencing artifacts and
contamination, e.g., adapters. In some cases, quality trimming might be recommended, as
it could significantly lower the error rate and therefore reduce the resource consumption
of an assembler. However, the trimming process should be performed very carefully,
as it is very easy to provoke coverage gaps by applying aggressive quality trimming,
resulting in deterioration of the assembly results. In addition, we need to note that any
pre-processing of paired-end reads should keep the left and right reads paired in the files.

Understanding SPAdes Input

The particular type of input files could significantly change the outcome of the assembly,
and therefore it is recommended to plan both the sequencing run and assembly pipeline
together. SPAdes accepts input as paired-end reads, mate-pairs, and single (unpaired)
reads in FASTA and FASTQ formats. For IonTorrent data, SPAdes also supports unpaired
reads in unmapped BAM format (like the one produced by Torrent Server). However, in
order to run the built-in read error correction, reads should be in FASTQ or BAM format.
Sanger, Oxford Nanopore, and PacBio CLR reads can be provided in either format since
SPAdes does not run error correction for these types of data.

To run SPAdes 3.14.1, one needs to have at least one library of the following types:

• Illumina paired-end/high-quality mate-pairs/unpaired reads
• IonTorrent paired-end/high-quality mate-pairs/unpaired reads
• PacBio CCS reads

SPAdes should not be used if you plan to assemble:

• Illumina and IonTorrent libraries together
• Only PacBio CLR, Oxford Nanopore, Sanger reads or contig sequences

In other words, SPAdes is capable of performing hybrid assemblies of short and long
noisy reads, but cannot be used for long-read assemblies alone.

Important notes:

• If providing SPAdes with multiple paired-end and mate-pair libraries, it is strongly
recommended to order them according to their insert size (from smallest to longest).

• It is not recommended to run SPAdes on PacBio reads with low coverage (less
than 5).

• We suggest not to run SPAdes on PacBio CCS reads for large genomes.
• SPAdes accepts gzip-compressed files as input.

Read-pair Libraries

By using the command-line interface (see Support Protocol 2), you can specify up to
nine different paired-end libraries, up to nine mate-pair libraries, and also up to nine
high-quality mate-pair libraries (such as Nextera Mate Pair Libraries) simultaneously.
To process more libraries, you can use YAML dataset description input file (See Support
Protocol 3). For brevity, we will refer to paired-end and mate-pair libraries simply as
read-pair libraries.

By default, SPAdes assumes that paired-end and high-quality mate-pair reads have
forward-reverse (fr) orientation and that ordinary mate-pairs have reverse-forward (rf)
orientation. However, different orientations can be set for any libraries by using options
in SPAdes.

To distinguish reads in pairs, we refer to them as left and right reads. For forward-reverse
orientation, the forward reads correspond to the left reads and the reverse reads to the Prjibelski et al.

3 of 29

Current Protocols in Bioinformatics



right. Similarly, in reverse-forward orientation, left and right reads correspond to reverse
and forward reads, respectively, and so on.

Each read-pair library can be stored in several files or several pairs of files. Paired reads
can be organized in two different ways:

• In file pairs. In this case, left and right reads are placed in different files and go in
the same order in respective files.

• In interleaved files. In this case, the reads are interlaced, so that each right read goes
after the corresponding paired left read.

For example, the Illumina sequencing process produces paired-end reads in two files:
R1.fastq contains left reads and R2.fastq contains right reads from the read-pair.
If you choose to store reads in file pairs, make sure that for every read from R1.fastq,
the corresponding paired read from R2.fastq is placed in the respective paired file on
the same line. If you choose to use interleaved files, every read from R1.fastq should
be followed by the corresponding paired read from R2.fastq.

If adapter and/or quality trimming software has been used prior to assembly, files with
the orphan reads can be provided as “single read files” for the corresponding read-pair li-
brary. It is extremely important to use paired-end-aware read trimming and preprocessing
software (see Troubleshooting for more information).

If you have merged some of the reads from your paired-end (not mate-pair or high-quality
mate-pair) library using tools such as BBMerge (Bushnell, Rood, & Singer, 2017) or
STORM, you should provide the file with resulting reads as a “merged read file” for the
corresponding library. Note that non-empty files with the remaining unmerged left/right
reads (separate or interlaced) must be provided for the same library in order for SPAdes
to correctly detect the original read length.

In an unlikely case that some of the reads from your mate-pair (or high-quality mate-pair)
library are “merged,” you should provide the resulting reads as a separate single-read
library.

Unpaired (Single-Read) Libraries

By using the command-line interface, you can specify up to nine different single-read li-
braries. To input more libraries, you can use a YAML dataset description file (see Support
Protocol 3). Single libraries are assumed to have high quality and reasonable coverage.
For example, you can provide PacBio CCS reads as a single-read library.

Note that you should not specify PacBio CLR, Sanger reads or additional contigs as
single-read libraries, as each of them has a separate option with special treatment.

PacBio and Oxford Nanopore Reads

SPAdes can take as an input an unlimited number of PacBio and Oxford Nanopore li-
braries for hybrid assemblies (e.g., with Illumina or IonTorrent). There is no need to pre-
correct this kind of data. SPAdes will use PacBio CLR and Oxford Nanopore reads for
gap closure and repeat resolution. For PacBio, you just need to have filtered subreads in
FASTQ/FASTA format. PacBio CCS/Reads of Insert reads or pre-corrected (using third-
party software) PacBio CLR/Oxford Nanopore reads can be simply provided as single
reads to SPAdes.

Additional Contigs

In case you have contigs generated for the same genome that were generated by other
assembler(s) and you wish to merge them into a SPAdes assembly, you can specifyPrjibelski et al.

4 of 29

Current Protocols in Bioinformatics



additional contigs using --trusted-contigs or --untrusted-contigs. The
first option is used when high-quality contigs are available. These contigs will be used for
graph construction, gap closure, and repeat resolution. The second option is used for less
reliable contigs that may have more errors or contigs of unknown quality. These contigs
will be used only for gap closure and repeat resolution. The number of additional contigs
is unlimited.

Note that SPAdes does not perform assembly using genomes of closely related species.
Only contigs of the same genome should be specified.

BASIC
PROTOCOL 1

ASSEMBLING ISOLATE BACTERIAL DATASETS

This protocol describes the basic assembly process for a regular multi-cell isolate dataset
by SPAdes. The protocol assumes that the input is a set of reads obtained from a single
bacterial genome sequenced with high coverage depth. Also, the coverage is assumed
to be uniform across the genome. There are no other restrictions and assumptions, so
all kinds of input data (see “Understanding SPAdes input” section) including long noisy
reads are supported and could be provided to SPAdes for hybrid assemblies.

Necessary Resources

Hardware

A 64-bit Linux or MacOS system with as much physical memory as possible is
recommended

NOTE: The memory and disk consumption heavily depend on the input data, and
in many cases cannot be estimated beforehand (see Strategic Planning section
for more information). While SPAdes could be run on computational clusters, it
cannot utilize the resources of these clusters fully. In particular, it cannot scale
over the multiple nodes; only a single node will be used.

Software

Python and SPAdes package (see Support Protocol 1 for installation)

Input files

Input files with reads in FASTA or FASTQ format. Input files can also be
compressed with Gzip. For IonTorrent reads, unmapped BAM files can also be
provided. At least one library with short reads is required. Multiple different
libraries can be provided simultaneously, but IonTorrent and Illumina reads
cannot be used together. Although SPAdes works with reads of any length, we
recommend not to use reads shorter than 100 bp.

More information can be found in the Understanding SPAdes input section (see
Strategic Planning)

1. Categorize your input data.
Before launching SPAdes, it is important to understand how to provide your input
data. Unpaired libraries for both short and long reads can be given in arbitrary order
using appropriate options (see Support Protocol 2). For optimal performance, paired-
end and mate-pair libraries should be provided in order of their insert size, from small-
est to largest. If several libraries have roughly the same insert size, we recommend
providing them as a single library that contains multiple files.

2. Specify your input data.
Follow Support Protocol 2 to correctly specify your input data via command-line
options. Alternatively, input data can be specified via a YAML configuration file (see
Support Protocol 3).

3. Optional: Set additional parameters. Prjibelski et al.

5 of 29

Current Protocols in Bioinformatics



Although SPAdes does not require any specific additional parameters, you may also
want to check Advanced Parameters in the Commentary section of this article, which
describes parameters to specify, e.g., number of computation threads to be used, the
memory limit, etc.

4. Run SPAdes pipeline.
Once all options are set, run the following command (bold text represents user input):

spades.py --isolate input_data_parameters
additional_parameters-o output_folder

For example:

spades.py --isolate --pe1-1 path_to/E.coli.10K.R1.
fastq.gz --pe1-2 path_to/E.coli.10K.R2.fastq.gz -o
output_folder

for the sample data.
The output directory will be created automatically. If you specify a folder already
containing data from a previous run, all old data will be lost.

5. Check that pipeline has completed successfully.
Once the SPAdes run is complete, check the end of the log for the presence of error
messages (the spades.log file can be also found in the output folder). If any er-
ror occurred, report it to spades.support@cab.spbu.ru or https://github.com/ablab/
spades/ issues. Do not forget to attach the spades.log and params.txt files.
If the run was successful, the output folder will contain the following files:

• contigs.fasta — resulting contig sequences in FASTA format;
• scaffolds.fasta — resulting scaffold sequences in FASTA format;
• assembly_graph.gfa — assembly graph and scaffolds paths in GFA 1.0

format;
• assembly_graph.fastg — assembly graph in FASTG format;
• contigs.paths — paths in the assembly graph corresponding to con-

tigs.fasta;
• scaffolds.paths — paths in the assembly graph corresponding to scaf-

folds.fasta;
• spades.log — file with all log messages.

To interpret results, follow the guidelines mentioned in Understanding SPAdes
Output under Guidelines for Understanding Results.
Sample file. As sample data for Basic Protocol 1, we provide a subset of the pub-
licly available E. coli sequencing dataset (accession number ERR008613). This sub-
set includes only reads mapped to the first 10 kbp of E. coli str. K12 substr. MG1655
genome. The dataset contains 100 bp Illumina paired-end reads with insert size ap-
proximately 215 bp.

• Left reads: E.coli.10K.R1.fastq.gz
• Right reads: E.coli.10K.R2.fastq.gz

Sample data. Running Basic Protocol 1 using files provided as sample files
(see Supporting Information), one should obtain a complete assembly of the first
10 kbp of the E. coli genome. Formally speaking, the resulting contigs.fasta
and scaffolds.fasta should contain a single sequence with the following ID:

NODE_1_length_10000_cov_196.710910

BASIC
PROTOCOL 2

ASSEMBLING METAGENOMIC DATASETS

This protocol describes the assembly process for metagenomic datasets by metaSPAdes.
The protocol assumes that the input is a set of reads obtained from a metagenomic DNA.Prjibelski et al.

6 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues
https://github.com/ablab/spades/issues


metaSPAdes is able to effectively assemble sequenced data from a mix of bacteria of
different abundances, and from closely related species. metaSPAdes aims to reconstruct
the “core metagenome” (Nurk et al., 2017), so if multiple close strains are presented, the
most covered is assembled. See “Understanding metaSPAdes Output” in Guidelines for
Understanding Results for more information.

Necessary Resources

Hardware

A 64-bit Linux or MacOS system with as much physical memory as possible is
recommended

NOTE: The memory and disk consumption heavily depend on the input data, and in
many cases cannot be estimated beforehand (see Strategic Planning section for
more information). While metaSPAdes could be run on computational clusters,
it cannot utilize the resources of these clusters fully. In particular, it cannot scale
over multiple nodes; only single node will be used.

Software

Python and SPAdes package (see Support Protocol 1 for installation)

Input files

Input files with reads sequenced from metagenome dataset in FASTA or FASTQ
format. Input files can also be compressed with Gzip. Only one library with
Illumina short paired reads is required. In addition, multiple different long-read
libraries (PacBio, ONT, etc.) can be provided simultaneously. Although
metaSPAdes works with reads of any length, we recommend not to use reads
shorter than 100 bp.

1. Specify your input data.
Follow Support Protocol 2 to correctly specify your input data via command-line
options. Alternatively, input data can be specified via a YAML configuration file (see
Support Protocol 3).
In addition to short-read data, an unlimited number of files containing long reads can
be provided via following options:

--nanopore for Oxford Nanopore reads;
--pacbio for PacBio reads.

Specifying additional long reads to supplement short reads will enable the
hybridSPAdes algorithm for hybrid metagenome assembly.

2. Optional: Set additional parameters.
Although metaSPAdes does not require any specific additional parameters, you may
also want to check Advanced Parameters in the Commentary section of this article,
which describes parameters to specify, e.g., number of computation threads to be
used, the memory limit, etc.

3. Run metaSPAdes pipeline.
Once all options are set, run the following command (bold text represents user input):

metaspades.py input_data_parameters
additional_parameters -o output_folder

The output directory will be created automatically. If you specify a folder already
containing data from a previous run, all old data will be lost.

4. Check that pipeline has completed successfully.
Once the metaSPAdes run is complete, check the end of the log for the presence of
error messages (the spades.log file can be also found in the output folder). If any Prjibelski et al.

7 of 29

Current Protocols in Bioinformatics



error occurred, report it to spades.support@cab.spbu.ru or https://github.com/ablab/
spades/ issues. Do not forget to attach the spades.log and params.txt files.

5. If the run was successful, the output folder will contain the following files:

• contigs.fasta — resulting contig sequences in FASTA format;
• scaffolds.fasta — resulting scaffold sequences in FASTA format;
• assembly_graph.gfa — assembly graph and scaffolds paths in GFA 1.0

format;
• assembly_graph.fastg — assembly graph in FASTG format;
• contigs.paths — paths in the assembly graph corresponding to
contigs.fasta;

• scaffolds.paths — paths in the assembly graph corresponding to
scaffolds.fasta;

• spades.log — file with all log messages.

To interpret results, follow the guidelines mentioned in Understanding metaSPAdes
Output under Guidelines for Understanding Results.

Sample file. As sample data for Basic Protocol 2, we provide a subset of the pub-
licly available E. coli sequencing dataset (accession number ERR008613). This sub-
set includes only reads mapped to the first 10 kbp of E. coli str. K12 substr. MG1655
genome. The dataset contains 100 bp Illumina paired-end reads with insert size ap-
proximately 215 bp (see Supporting Information).

• Left reads: E.coli.10K.R1.fastq.gz
• Right reads: E.coli.10K.R2.fastq.gz

Sample data. Running Basic Protocol 2 using the files provided as sample files (see
Supporting Information), one should obtain a complete assembly of the first 10 kbp of
the E. coli genome. Formally speaking, the resulting contigs.fasta and scaf-
folds.fasta should contain a single sequence with the following ID:
NODE_1_length_10000_cov_208.790347

BASIC
PROTOCOL 3

ASSEMBLING SETS OF PUTATIVE PLASMIDS

Plasmids are stably maintained extrachromosomal genetic elements that replicate inde-
pendently from the host cell’s chromosomes.

This protocol describes algorithms and software for assembling plasmids from genomic
and metagenomic datasets with plasmidSPAdes and metaplasmidSPAdes

In general, plasmidSPAdes and metaplasmidSPAdes pipelines are mostly based on the
main SPAdes and metaSPAdes, with an additional stage that makes it possible to remove
contigs that correspond to bacterial chromosomes using the sequence coverage informa-
tion. plasmidSPAdes and metaplasmidSPAdes perform best on high-copy-number plas-
mids. For low-copy-number plasmids, Basic Protocol 1 or 2 (depending on dataset type)
may provide even better results.

Necessary Resources

Hardware

A machine with a significant amount of physical memory. Recommended RAM
minimum is 8 GB, 16 GB should be enough for most bacterial isolates, but more
can be required for metagenomic datasets. A 64-bit Linux system or MacOS is
also required.

Software

Python and SPAdes package (see Support Protocol 1 for installation)Prjibelski et al.

8 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues
https://github.com/ablab/spades/issues


Input files

Input files with reads sequenced from a genomic or metagenomic dataset in FASTA
or FASTQ format. Input files can also be compressed with Gzip. Only one
library with Illumina short paired reads is required.

1. Specify your input data.
Follow Support Protocol 2 to correctly specify your input data via command-line
options. Alternatively, input data can be specified via a YAML configuration file (see
Support Protocol 3).
Long reads can be provided via following options:

--nanopore for Oxford Nanopore reads;
--pacbio for PacBio reads;

We do not recommend using long reads for plasmid assembly.
Specifying additional long reads to supplement short reads will enable the
hybridSPAdes algorithm for hybrid assembly.

2. Optional: Set additional parameters.
Although plasmidSPAdes does not require any specific additional parameters, you
may also want to check Advanced Parameters in the Commentary section of this ar-
ticle, which describes parameters to specify, e.g., number of computation threads to
be used, the memory limit, etc.

3. Run plasmidSPAdes pipeline.
Once all options are set, run the following command (bold text represents user input):

plasmidspades.py input_data_parameters
additional_parameters -o output_folder

for an isolated bacterial dataset or

metaplasmidspades.py input_data_parameters
additional_parameters -o output_folder

for a metagenomic dataset
The output directory will be created automatically. If you specify a folder already
containing data from a previous run, all old data will be lost.

4. Check that pipeline has completed successfully.
Once the plasmidSPAdes or metaplasmidSPAdes run is complete, check the end of
the log for the presence of error messages (the spades.log file can be also found in
the output folder). If any error occurred, report it to spades.support@cab.spbu.ru or
https://github.com/ablab/spades/ issues. Do not forget to attach the spades.log
and params.txt files.

5. If the run was successful, the output folder will contain the following files:

• contigs.fasta — resulting contig sequences in FASTA format;
• scaffolds.fasta — resulting scaffold sequences in FASTA format;
• assembly_graph.gfa — assembly graph and scaffolds paths in GFA 1.0

format;
• assembly_graph.fastg — assembly graph in FASTG format;
• contigs.paths — paths in the assembly graph corresponding to
contigs.fasta;

• scaffolds.paths — paths in the assembly graph corresponding to
scaffolds.fasta;

• spades.log — file with all log messages.

To interpret results, follow the guidelines mentioned in Understanding plas-
midSPAdes and metaplasmidSPAdes Output under Guidelines for Understanding Re-
sults. Prjibelski et al.

9 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues


Sample file. As sample data for Basic Protocol 3 we provide a set of reads simulated
from Yersinia pestis strain Cadman plasmid pPCP1 and artificially (in silico) mixed
with E. coli chromosomal reads. The dataset contains 100 bp Illumina paired-end
reads with insert size approximately 215 bp (see Supporting Information).

• Left reads: Y.pestis.pPCP1.R1.fastq.gz
• Right reads: Y.pestis.pPCP1.R2.fastq.gz

Sample data. Running Basic Protocol 3 using the files provided as sample files (as
isolated bacterial dataset; see Supporting Information), one should obtain a com-
plete assembly of Y. pestis plasmid pPCP1. Formally speaking, the resulting con-
tigs.fasta and scaffolds.fasta should contain a single sequence with the
following ID:

NODE_1_length_9689_cov_4.668331_component_0

BASIC
PROTOCOL 4

ASSEMBLING TRANSCRIPTOMES

RNA sequencing data is typically used for gene expression analysis via mapping reads
to a reference genome. However, for organisms without a high-quality reference genome
or gene annotation, de novo transcriptome assembly is a viable alternative. This protocol
describes the transcriptome assembly process with rnaSPAdes—a pipeline implemented
within the SPAdes package. RnaSPAdes performs assembly from short Illumina or Ion-
Torrent reads, but additionally can take PacBio Iso-seq or Oxford Nanopore reads as an
input for hybrid assembly.

In general, the rnaSPAdes pipeline is very similar to the main SPAdes workflow. How-
ever, rnaSPAdes implements different simplification algorithms, which were designed
specifically for transcriptomic data (Bushmanova et al., 2019). Later, instead of repeat
resolution and scaffolding, rnaSPAdes performs reconstruction of the sequences of the
transcripts (including alternatively spliced isoforms) via the same exPAnder module.

Necessary Resources

Hardware

A machine with a significant amount of physical memory. Recommended RAM
minimum is 8 GB, but more can be required for typical RNA-seq datasets. A
64-bit Linux system or MacOS is also required.

Software

Python and SPAdes package (see Support Protocol 1 for installation)

Input files

Input files with RNA reads in FASTA or FASTQ format. Input files can also be
compressed with Gzip. For IonTorrent reads, unmapped BAM files can also be
provided. At least one library with short reads is required. Multiple different
libraries can be provided simultaneously, but IonTorrent and Illumina reads
cannot be used together. Although rnaSPAdes works with reads of any length,
we recommend not to use reads shorter than 100 bp.

Strand-specific data can also be provided as an input. However, if multiple
short-read libraries are specified, strand specificity must be the same for all of
them. Combining strand-specific and non-stranded data, or mixing different
kinds of strand-specific data, is not possible.

Besides assembly of conventional short-read RNA-seq data, rnaSPAdes also
supports hybrid transcriptome assembly (Prjibelski, Korobeynikov, & Lapidus,
2019). In addition to accurate short reads, it takes as an input long noisy RNA
reads, such as Pacific Biosciences Iso-seq or Oxford Nanopore, which do not

Prjibelski et al.

10 of 29

Current Protocols in Bioinformatics



need to be corrected prior to assembly in any case and can be provided in any
amount and combination.

More information can be found in Understanding SPAdes Input (see Strategic
Planning).

1. Categorize your input data.
Before launching rnaSPAdes, it is important to understand how to provide your input
data. Unpaired libraries for both short and long reads can be given in arbitrary order
using appropriate options (see Support Protocol 2). For optimal performance, paired-
end libraries should be provided according to their insert size, from smallest to largest.
If several libraries have roughly the same insert size, we recommend providing them
as a single library that contains multiple files. This recommendation also applies when
you aim to assemble a total transcriptome from different samples (e.g., collected from
different tissues or under different conditions).
As mentioned above, IonTorrent and Illumina data cannot be used together. Simi-
larly, libraries with different strand specificity characteristics should not be provided
simultaneously.

2. Optional: Determine strand specificity of short-read libraries.
Typically, a library preparation kit specifies whether your data are strand specific or
not. However, if you use a dataset of an unknown origin, or simply want to check your
library, follow Support Protocol 5.

3. Specify your input data.
Follow Support Protocol 2 to correctly specify your input data via command-line
options. Alternatively, input data can be specified via a YAML configuration file (see
Support Protocol 3).
When using strand-specific data, use the following options:

• --ss fr for forward-reverse strand-specific data;
• --ss rf for reverse-forward strand-specific data.

In addition to short-read data, an unlimited number of files containing long reads or
full transcript sequences can be provided via following options:

• --nanopore for Oxford Nanopore RNA reads;
• --pacbio for PacBio Iso-seq reads;
• --fl-rna for full-length reads/transcript sequences.

4. Optional: Set additional parameters.
Although rnaSPAdes does not require any additional parameters, you may also want
to check Advanced Parameters in the Commentary section of this article.

5. Run rnaSPAdes pipeline.
Once all options are set, run the following command (bold text represents user input):

rnaspades.py input_data_parameters
additional_parameters -o output_folder

The output directory will be created automatically. If you specify a folder already
containing data from a previous run, all old data will be lost.

6. Check that pipeline has completed successfully.
Once the rnaSPAdes run is complete, check the end of the log for presence of error
messages (the spades.log file can be also found in the output folder). If any er-
ror occurred, report it to spades.support@cab.spbu.ru or https://github.com/ablab/
spades/ issues. Do not forget to attach the spades.log and params.txt files.
If the run was successful, the output folder will contain the following files:

• transcripts.fasta — resulting transcript sequences in FASTA format;
Prjibelski et al.

11 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues
https://github.com/ablab/spades/issues


• assembly_graph.gfa — assembly graph and scaffolds paths in GFA 1.0
format;

• assembly_graph.fastg — assembly graph in FASTG format;
• transcripts.paths — paths in the assembly graph corresponding to tran-

scripts.fasta;
• spades.log — file with all log messages.

To interpret the results, follow the guidelines for understanding rnaSPAdes output.
Sample file. As sample data for Basic Protocol 4 we provide a set of 126 bp paired-
end Illumina reads simulated from a single isoform of H. sapiens GYPC gene (see
Supporting Information).

• Left reads: H.sapiens.GYPC.R1.fastq.gz
• Right reads: H.sapiens.GYPC.R2.fastq.gz

Sample data. Running Basic Protocol 4 using the files provided as sample
files (see Supporting Information), one should obtain a single sequence of the
ENST00000356887.12 isoform of the human gene GYPC. Formally speaking, the
resulting transcripts.fasta should contain a single sequence with the follow-
ing ID:

NODE_1_length_1802_cov_33.685238_g0_i0

BASIC
PROTOCOL 5

ASSEMBLING PUTATIVE BIOSYNTHETIC GENE CLUSTERS

Biosynthetic gene clusters (BGC) are operons encoding secondary metabolites, and
are often present in bacterial and fungal genomes. Assembly of some BGC classes is
challenging, since they may contain multiple homologous genes inside a single cluster,
making the assembly graph highly repetitive. This basic protocol describes the biosyn-
theticSPAdes assembly process, which takes a single paired-read library with optional
long-read libraries and produces an assembly of putative biosynthetic gene-cluster nu-
cleotide sequences. BiosyntheticSPAdes is based on the metaSPAdes pipeline, but intro-
duces additional modules that allow the annotation of BGC domains on the assembly
graph, decrease the number of mismatches and indels, and enumerate all putative BGCs.

Necessary Resources

Hardware

A machine with a significant amount of physical memory. Recommended RAM
minimum is 8 GB, but typical metagenomics datasets require significantly more
memory. 64-bit Linux system or MacOS are also required.

Software

Python and SPAdes package (see Support Protocol 1 for installation).

Input files

Input files with reads sequenced from metagenomics or an isolated bacterial/fungal
dataset in FASTA or FASTQ format. Input files can also be compressed with
Gzip. Exactly one library with Illumina short paired reads is required. Multiple
different long-read libraries (PacBio, ONT, etc.) can be provided
simultaneously. Although biosyntheticSPAdes works with reads of any length,
we recommend not to use reads shorter than 100 bp.

Sample file: As sample data for Basic Protocol 5 we provide a set of reads
simulated from the abyssomicin C biosynthetic gene cluster from
Verrucosispora maris str. AB-18-032. The dataset contains 150-bp simulated
Illumina paired-end reads with insert size of approximately 500 bp.

Prjibelski et al.

12 of 29

Current Protocols in Bioinformatics



1. Specify your input data.
Follow Support Protocol 2 to correctly specify your input data via command-line
options. Alternatively, input data can be specified via a YAML configuration file (see
Support Protocol 3).
In addition to short-read data, an unlimited number of files containing long reads can
be provided via the following options:

--nanopore for Oxford Nanopore reads;
--pacbio for PacBio reads;

2. Optional: Set additional parameters.
Although biosyntheticSPAdes does not require any additional parameters, you may
also want to check Advanced Parameters in the Commentary section of this article,
which describes parameters.

3. Run biosyntheticSPAdes pipeline.
Once all options are set, run the following command (bold text represents user input):

spades.py --bio input_data_parameters
additional_parameters -o output_folder

The output directory will be created automatically. If you specify a folder already
containing data from a previous run, all old data will be lost.

4. Check that pipeline has completed successfully.
Once the biosyntheticSPAdes run is complete, check the end of log for presence of
error messages (the spades.log file can be also found in the output folder). If any
error occurred, report it to spades.support@cab.spbu.ru or https://github.com/ablab/
spades/ issues. Do not forget to attach the spades.log and params.txt files.

5. If the run was successful, the output folder will contain the following files:

• gene_clusters.fasta — resulting gene clusters sequences in FASTA for-
mat;

• bgc_statistics.txt— file with basic annotation of putative gene clusters;
• domain_graph.dot —domain graph in dot-format;
• spades.log — file with all log messages.

To interpret the results, follow guidelines mentioned in Understanding biosynthetic-
SPAdes Output under Guidelines for Understanding Results.

Sample data

After successful completion of biosyntheticSPAdes on the sample data, output should
contain the following:

• gene_clusters.fasta should contain two fasta records named
NODE_1_length_59311_cluster_1_candidate_1 and NODE_1_
length_59311_cluster_1_candidate_2

• bgc_statistics.txt should contain information about two putative biosyn-
thetic gene clusters found. The domain sequence for both candidates should be
TE-AT-KR-AT-KR-AT-KR-AT-AT-KR-AT-AT-KR-AT-AT.

• domain_graph.dot should contain domain graph description in dot format.
Visual representation should image two isoform subgraphs.

• spades.log should contain no error messages.

To interpret the results, follow the guidelines mentioned in Understanding biosynthetic-
SPAdes Output under Guidelines for Understanding Results.

Prjibelski et al.

13 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues
https://github.com/ablab/spades/issues


SUPPORT
PROTOCOL 1

INSTALLING SPAdes

SPAdes is freely available to download in the form of the source code package. Pre-
built binaries are available for download as well. While we do our best to ensure that
the pre-built binaries are universal enough to run on the wide variety of Linux and Mac
platforms, we cannot guarantee that they will be run on your particular system. If it does
not, building from the source code is desired. In addition to this, SPAdes is available from
several package managers including Conda and Homebrew, among the others.

Necessary Resources

Hardware

SPAdes requires a 64-bit Linux system or Mac OS with as much physical memory
as possible (16 Gb or more for larger assembly tasks)

Software

• Python (supported versions are Python2: 2.7, and Python3: 3.2 and higher)
• C++14 compliant C++ compiler. In particular, GCC version 5.8.3 or newer, or

clang version 7 or newer, are required
• cmake (version 2.8.12 or higher)
• zlib
• libbz2

1. Download the latest version of SPAdes from http://cab.spbu.ru/software/spades.

2. Unpack the tar file (we are using SPAdes 3.14 as an example) and move into SPAdes
directory:

tar -xzf SPAdes-3.14.1.tar.gz
cd SPAdes-3.14.1

3. Build SPAdes with the following script:

./spades_compile.sh

4. SPAdes will be built in the directory ./bin. If you wish to install SPAdes into an-
other directory, you can specify the full path of the destination folder by running the
following command in bash or sh:

PREFIX=<destination_dir>./spades_compile.sh
for example:

PREFIX=/usr/local./spades_compile.sh
which will install SPAdes into /usr/local/bin.

5. After installation, you will get the same files (listed below) in the ./bin directory (or
<destination_dir>/bin if you specified PREFIX). We also suggest adding
SPAdes installation directory to the PATH variable.

6. In the case of successful installation, the following files will be placed in the ./bin
directory, among others:

• spades.py (main executable script)
• metaspades.py (main executable script for metaSPAdes)
• plasmidspades.py (main executable script for plasmidSPAdes)
• metaplasmidspades.py (main executable script for metaplasmidSPAdes)
• rnaspades.py (main executable script for rnaSPAdes)
• spades-core (assembly module)
• spades-gbuilder (standalone graph builder application)
• spades-gmapper (standalone long read to graph aligner)
• spades-kmercount (standalone k-mer counting application)Prjibelski et al.

14 of 29

Current Protocols in Bioinformatics

http://cab.spbu.ru/software/spades


• spades-hammer (read error correcting module for Illumina reads)
• spades-ionhammer (read error correcting module for IonTorrent reads)
• spades-bwa (BWA alignment module which is required for mismatch correc-

tion)
• spades-corrector-core (mismatch correction module).

7. Verify your installation.
For testing purposes, SPAdes comes with a sample data set (reads that align to the
first 1000 bp of E. coli genome). To try SPAdes on this data set, run:

<spades installation dir>/spades.py --test
If you added SPAdes installation directory to the PATH variable, you can run:

spades.py --test
For simplicity we assume that SPAdes installation directory is added to the PATH
variable.
If the installation is successful, you will find the following information at the end of
the log:

===== Assembling finished. Used k-mer sizes: 21, 33, 55
* Corrected reads are in spades_test/corrected/
* Assembled contigs are in spades_test/contigs.fasta
* Assembled scaffolds are in
spades_test/scaffolds.fasta

* Assembly graph is in spades_test/assembly_graph.fastg
* Assembly graph in GFA format is in
spades_test/assembly_graph.gfa

* Paths in the assembly graph corresponding to the
contigs are in spades_test/contigs.paths

* Paths in the assembly graph corresponding to the
scaffolds are in spades_test/scaffolds.paths

======= SPAdes pipeline finished.
========= TEST PASSED CORRECTLY.
SPAdes log can be found here: spades_test/spades.log
Thank you for using SPAdes!

SUPPORT
PROTOCOL 2

PROVIDING INPUT VIA COMMAND LINE

SPAdes supports multiple input libraries and can utilize them all in order to obtain best
possible results. The command-line interface allows basic specification of a single input
library as well as an advanced way to specify multiple libraries of different kinds.

Necessary Resources

Hardware

See Basic Protocol 1

Software

See Basic Protocol 1

Specifying single library (paired-end or single-read)

--12 <file_name> File with interlaced forward and reverse paired-end reads
-1 <file_name> File with forward reads
-2 <file_name> File with reverse reads
--merged <file_name> File with merged paired reads. If the properties of the

library permit, overlapping paired-end reads can be merged using special
software. Non-empty files with (remaining) unmerged left/right reads (separate Prjibelski et al.

15 of 29

Current Protocols in Bioinformatics



or interlaced) must be provided for the same library for SPAdes to correctly
detect the original read length.

-s <file_name> File with unpaired reads

Specifying multiple libraries

Single-read libraries

--s<#> <file_name> File for single-read library number <#> (<#> =
1,2,..,9). For example, for the first paired-end library the option is --s1
<file_name>. Do not use -s options for single-read libraries, since they
specifies unpaired reads for the first paired-end library.

Paired-end libraries

--pe<#>-12 <file_name> File with interlaced reads for paired-end library
number <#> (<#> = 1,2,..,9). For example, for the first single-read
library the option is: --pe1-12 <file_name>.

--pe<#>-1 <file_name> File with left reads for paired-end library number
<#> (<#> = 1,2,..,9)

--pe<#>-2 <file_name> File with right reads for paired-end library number
<#> (<#> = 1,2,..,9)

--pe<#>-m <file_name> File with merged reads from paired-end library
number <#> (<#> = 1,2,..,9). If the properties of the library permit,
paired reads can be merged using special software. Non-empty files with
(remaining) unmerged left/right reads (separate or interlaced) must be provided
for the same library for SPAdes to correctly detect the original read length.

--pe<#>-s <file_name> File with unpaired reads from paired-end library
number <#> (<#> = 1,2,..,9). For example, paired reads can become
unpaired during the error correction procedure.

--pe<#>-<or> Orientation of reads for paired-end library number <#>
(<#> = 1,2,..,9; <or> = “fr”,“rf”,“ff”). The default
orientation for paired-end libraries is forward-reverse (--> <--). For
example, to specify reverse-forward orientation for the second paired-end
library, you should use the flag: --pe2-rf (should not be confused with FR
and RF strand-specificity for RNA-seq data; see Basic Protocol 3).

Mate-pair libraries

--mp<#>-12 <file_name> File with interlaced reads for mate-pair library
number <#> (<#> = 1,2,..,9)

--mp<#>-1 <file_name> File with left reads for mate-pair library number
<#> (<#> = 1,2,..,9)

--mp<#>-2 <file_name> File with right reads for mate-pair library number
<#> (<#> = 1,2,..,9)

--mp<#>-<or> Orientation of reads for mate-pair library number <#>
(<#> = 1,2,..,9; <or> = “fr”,“rf”,“ff”). The default
orientation for mate-pair libraries is reverse-forward (<-- -->). For example,
to specify forward-forward orientation for the first mate-pair library, you should
use the flag --mp1-ff.

High-quality mate-pair libraries (can be used for mate-pair only assembly)

--hqmp<#>-12 <file_name> File with interlaced reads for high-quality
mate-pair library number <#> (<#> = 1,2,..,9)

--hqmp<#>-1 <file_name> File with left reads for high-quality mate-pair
library number <#> (<#> = 1,2,..,9)

--hqmp<#>-2 <file_name> File with right reads for high-quality mate-pair
library number <#> (<#> = 1,2,..,9)

Prjibelski et al.

16 of 29

Current Protocols in Bioinformatics



--hqmp<#>-s <file_name> File with unpaired reads from high-quality
mate-pair library number <#> (<#> = 1,2,..,9)

--hqmp<#>-<or> Orientation of reads for high-quality mate-pair library
number <#> (<#> = 1,2,..,9; <or> = “fr”,“rf”,“ff”).
The default orientation for high-quality mate-pair libraries is forward-reverse
(--> <--). For example, to specify reverse-forward orientation for the first
high-quality mate-pair library, you should use the flag: --hqmp1-rf.

Specifying data for hybrid assembly

--pacbio <file_name> File with PacBio CLR reads. For PacBio CCS reads
use -s option

--nanopore <file_name> File with Oxford Nanopore reads
--sanger <file_name> File with Sanger reads
--trusted-contigs <file_name> Reliable contigs of the same genome,

which are likely to have no mis-assemblies and small rate of other errors (e.g.,
mismatches and indels). This option is not intended for contigs of the related
species.

--untrusted-contigs <file_name> Contigs of the same genome, quality
of which is average or unknown. Contigs of poor quality can be used, but may
introduce errors in the assembly. This option is also not intended for contigs of
the related species.

SUPPORT
PROTOCOL 3

PROVIDING INPUT VIA YAML FILE

An alternative way to specify an input dataset for SPAdes is to create a YAML configu-
ration file. By using a YAML file, you can provide an unlimited number of paired-end,
mate-pair, and unpaired libraries. Basically, a YAML data set file is a text file in which
input libraries are provided as a comma-separated list in square brackets. Each library is
provided in brackets as a comma-separated list of attributes.

Necessary Resources

Hardware

See Basic Protocol 1

Software

See Basic Protocol 1

The following YAML attributes are available:

1. Orientation (“fr”, “rf”, “ff”).

2. Type (“paired-end”, “mate-pairs”, “hq-mate-pairs”, “single”, “pacbio”, “nanopore”,
“sanger”, “trusted-contigs”, “untrusted-contigs”).

3. Interlaced reads (comma-separated list of files with interlaced reads).

4. Left reads (comma-separated list of files with left reads).

5. Right reads (comma-separated list of files with right reads).

6. Single reads (comma-separated list of files with single reads or unpaired reads from
paired library).

7. Merged reads (comma-separated list of files with merged reads).
To properly specify a library, you should provide its type and at least one file with
reads. Orientation is an optional attribute. Its default value is “fr” (forward-reverse)
for paired-end and high-quality mate-pair libraries and “rf” (reverse-forward) for
standard mate-pair libraries. The value for each attribute is given after a colon. Prjibelski et al.

17 of 29

Current Protocols in Bioinformatics



Comma-separated lists of files should be given in square brackets. For each file, you
should provide its full path in double quotes. Make sure that files with right reads are
given in the same order as corresponding files with left reads.
For example, if you have one paired-end library, split it into two pairs of files:

lib_pe1_left_1.fastq lib_pe1_right_1.fastq
lib_pe1_left_2.fastq lib_pe1_right_2.fastq

one mate-pair library:

lib_mp1_left.fastq lib_mp1_right.fastq
and PacBio CCS and CLR reads:

pacbio_ccs.fastq pacbio_clr.fastq
Then, the YAML dataset description file should look like this:

[
-- orientation: “fr”,

type: “paired-end”,
right reads: [

“/FULL_PATH_TO_DATASET/lib_pe1_right_1.fastq”,

“/FULL_PATH_TO_DATASET/lib_pe1_right_2.fastq”
],
left reads: [

“/FULL_PATH_TO_DATASET/lib_pe1_left_1.fastq”,

“/FULL_PATH_TO_DATASET/lib_pe1_left_2.fastq”
]

},
-- orientation: “rf”,

type: “mate-pairs”,
right reads: [

“/FULL_PATH_TO_DATASET/lib_mp1_right.fastq”
],
left reads: [

“/FULL_PATH_TO_DATASET/lib_mp1_left.fastq”
]

},
-- type: “single”,

single reads: [
“/FULL_PATH_TO_DATASET/pacbio_ccs.fastq”

]
},
-- type: “pacbio”,

single reads: [
“/FULL_PATH_TO_DATASET/pacbio_clr.fastq”

]
}

]
Once you have created a YAML file, save it with a .yaml extension (e.g.,
as my_data_set.yaml) and run SPAdes using the --dataset option:
--dataset <your YAML file>.

Prjibelski et al.

18 of 29

Current Protocols in Bioinformatics



Notes
1. The --dataset option cannot be used with any other options for specifying input

data. We recommend to nest all files with long reads of the same data type in a single
library block.

2. spades.py creates the input_dataset.yaml file in the output folder from
the input command-line options. One could use this file as a template for the further
modifications.

SUPPORT
PROTOCOL 4

RESTARTING A PREVIOUS RUN

Often, an assembly job will require several days if not weeks to complete, depending
on the complexity of the dataset in question. Many computational clusters and shared
servers have disk, execution time, and memory quotas, making long-running assemblies
quite challenging. SPAdes includes a checkpoint engine that allows fine- and coarse-
grained saving of the assembler internal state for future continuation of assembly with
optionally changed parameters such as hard memory limit, etc.

One needs to ensure that enough disk space is available should checkpoints be used, as
in this case SPAdes saves its entire internal space to disk and therefore the disk space
consumption is proportional to the amount of memory used. For large metagenomes,
this could easily take up several hundred gigabytes of disk space.

Necessary Resources

Hardware

See Basic Protocol 1

Software

See Basic Protocol 1

1. Decide if coarse-grained checkpoints will be enough for the assembly job. If coarse-
grained checkpoints are used, SPAdes will be able to continue only from the start
of each of its stages, although neither additional disk space nor computational time
required to save checkpoints will be utilized. This is the default SPAdes execution
mode. The coarse checkpoints are made after:

• error correction module is finished
• iteration for each specified k value of assembly module is finished
• mismatch correction is finished for contigs or scaffolds

2. If fine-grained checkpoints are necessary, decide whether to keep the whole his-
tory of checkpoints or only the last successful one. In the case of the latter, SPAdes
will be able to continue from the last checkpoint; however, restarting will be pos-
sible only from separate stages. The execution time for writing fine-grained check-
points is the same, and the disk usage is significantly less should only the last check-
point be kept. Fine-grained checkpoints are enabled via the command-line option
--checkpoints. The argument should be all or last, depending on whether
all checkpoints or only the last are kept. For example:

spades.py -o <output_directory> <other options>
--checkpoints last

saves only the last checkpoint.

3. Run SPAdes using any of the protocols provided in this article.

Prjibelski et al.

19 of 29

Current Protocols in Bioinformatics



4. Should SPAdes crash for some reason (e.g., insufficient memory, disk quota exceeded,
etc.), continue the SPAdes job using the --continue option. In addition, the output
directory should be specified, as this is where the checkpoints are created:

spades.py --continue -o <output_directory>

No other options can be specified along with --continue.

5. Alternatively, it is possible to restart SPAdes after changing some execution parame-
ters. For this use the --restart-from <checkpoint> command-line option.
Checkpoints are:

• ec – start from error correction
• as – restart assembly module from the first iteration
• k<int> – restart from the iteration with specified k values, e.g., k55 (not avail-

able in RNA-seq mode)
• mc – restart mismatch correction
• last – restart from the last available check-point (similar to –continue)

In contrast to the --continue option, you can change some of the options when
using --restart-from. You can change any option except: all basic options, all
options for specifying input data (including --dataset), the --only-error-
correction option, and the --only-assembler option. For example, if
you ran the assembler with k values 21,33,55 without mismatch correction, you can
add one more iteration with k=77 and run the mismatch correction step by running
SPAdes with the following options:

--restart-from k55 -k 21,33,55,77
--mismatch-correction -o
<previous_output_dir>

Since all files will be overwritten, do not forget to copy your assembly from the pre-
vious run if you need it.

SUPPORT
PROTOCOL 5

DETERMINING STRAND-SPECIFICITY OF RNA-seq DATA

Strand-specific RNA-seq data can be beneficial for both reference-based analysis and de
novo assembly. Typically, a library preparation kit specifies whether your data is strand-
specific or not. However, if you use a dataset of unknown origin, or simply want to check
your library, follow this protocol.

Necessary Resources

Hardware

Similar to basic requirements (see Basic Protocol 1)

Software

• STAR (Dobin et al., 2013) or Hisat2 (Kim, Langmead, & Salzberg, 2015) aligners
• samtools (Li et al., 2009)
• bedops (Neph et al., 2012)
• RSeQC (Wang, Wang, & Li, 2012)

Files

• Input short-reads RNA-seq data in FASTA or FASTQ format
• Reference genome in FASTA format
• Gene annotation in GTF/GFF/BED format

Note: Bold text represents user input.

1. Construct index of your reference genome.Prjibelski et al.

20 of 29

Current Protocols in Bioinformatics



One of the following spliced aligners can be used:

a. STAR:

STAR --runMode genomeGenerate --runThreadN threads
--genomeDir index --genomeFastaFiles reference.fasta

a. Hisat2:

hisat2-build reference.fasta index -p threads

2. Map reads.
Use the same tools as in step 1.

a. STAR:

STAR --runThreadN threads --genomeDir index
--readFilesIn left_reads.fastq right_reads.fastq
--outFileNamePrefix output --outSAMtype BAM
SortedByCoordinate

a. Hisat2:

hisat2 -x index -1 left_reads.fastq -2
right_reads.fastq -p threads -S output.sam

3. Sort alignments.
The resulting alignments are required to be sorted (automatically done when using
STAR with --outSAMtype BAM SortedByCoordinate option), which can
be done by using samtools package:

samtools sort input.sam -o sorted.bam

4. Convert gene annotation to BED format.
Genome annotation needs to be converted to BED format. If your annotation is stored
in typical GTF/GFF format, conversion can be done using bedops package:

convert2bed -i format < annotation > annotation.bed

5. Determine strand specificity.
To determine strand specificity using mapped reads, you will need to run in-
fer_experiment.py scripts from the RSeQC package:

python infer_experiment.py -i sorted.bam -r annotation.bed
If the majority of reads are explained by “1++,1--,2+-,2-+”, strand-
specificity is likely to be reverse-forward. If the majority of reads are explained
by “1+-,1-+,2++,2--”, the data seems to have reverse-forward strand-
specificity. If both fractions are similar, your data is not strand-specific. For more
details see the RSeQC manual at http:// rseqc.sourceforge.net/#infer-experiment-py.

GUIDELINES FOR UNDERSTANDING RESULTS

Generic SPAdes output

SPAdes stores all output files in <output_dir>, which is set by the user via the -o
command line option.

• <output_dir>/corrected/ contains reads corrected by BayesHammer in
*.fastq.gz files; if compression is disabled, reads are stored in uncompressed
*.fastq files

• <output_dir>/scaffolds.fasta contains resulting scaffolds (recom-
mended for use as resulting sequences)

• <output_dir>/contigs.fasta contains resulting contigs
• <output_dir>/assembly_graph.gfa contains SPAdes assembly graph

and scaffold paths in GFA 1.0 format Prjibelski et al.

21 of 29

Current Protocols in Bioinformatics

http://rseqc.sourceforge.net/#infer-experiment-py


• <output_dir>/assembly_graph.fastg contains SPAdes assembly graph
in FASTG format

• <output_dir>/contigs.paths contains paths in the assembly graph corre-
sponding to contigs.fasta (see details below)

• <output_dir>/scaffolds.paths contains paths in the assembly graph
corresponding to scaffolds.fasta (see details below).

Contig and scaffold names in SPAdes output FASTA files have the following format:

NODE_3_length_237403_cov_243.207

Here, 3 is the number of the contig/scaffold (contigs are ordered by their length), 237403
is the sequence length in nucleotides, and 243.207 is the k-mer coverage for the last
(largest) k-mer length used. Note that the k-mer coverage is always lower than the read
(per-base) coverage.

In general, SPAdes uses two techniques for joining contigs into scaffolds. The first
one relies on read-pairs and tries to estimate the size of the gap separating con-
tigs. The second one relies on the assembly graph: e.g., if two contigs are sep-
arated by a complex tandem repeat that cannot be resolved exactly, contigs are
joined into a scaffold with a fixed gap size of 100 N symbols inserted to out-
line this. Contigs produced by SPAdes do not contain ambiguous IUPAC symbols
(including N).

Understanding Scaffold Paths

To view FASTG and GFA files, we recommend using a Bandage visualiza-
tion tool (Wick, Schultz, Zobel, & Holt, 2015). Note that sequences stored in
assembly_graph.fastg correspond to contigs before repeat resolution (edges of
the assembly graph). Paths corresponding to contigs after repeat resolution (scaffolding)
are stored in contigs.paths (scaffolds.paths) in the format accepted by
Bandage (see Bandage Wiki for details). The example is given below.

Let the contig with the name NODE_5_length_100000_cov_215.651 consist of
the following edges of the assembly graph:

>EDGE_2_length_33280_cov_199.702
>EDGE_5_length_84_cov_321.414’
>EDGE_3_length_111_cov_175.304
>EDGE_5_length_84_cov_321.414’
>EDGE_4_length_66661_cov_223.548

Then, contigs.paths will contain the following entry:

NODE_5_length_100000_cov_215.651
2+,5-,3+,5-,4+

Since the current version of Bandage does not accept paths with gaps, paths correspond-
ing contigs/scaffolds jumping over a gap in the assembly graph are split by a semicolon
at the gap position. For example, the following record:

NODE_3_length_237403_cov_243.207
21-,17-,15+,17-,16+;
31+,23-,22+,23-,4-

states that NODE_3_length_237403_cov_243.207 corresponds to the path
with 10 edges, but jumps over a gap between edges EDGE_16_length_21503_cov_
482.709 and EDGE_31_length_140767_cov_220.239.Prjibelski et al.

22 of 29

Current Protocols in Bioinformatics



Understanding metaSPAdes Output

There is no universal outcome for metagenome assembly. The ideal scenario is to obtain
the complete genome sequence of each and every species presented in the dataset. How-
ever, usually this is not possible, especially when strains are involved, as strain variations
need to be distinguished from sequencing errors (see Nurk et al., 2017, and Prjibelski
et al., 2019, for extensive discussion).

In short, to deal with this problem, metaSPAdes aims to achieve a so-called consensus as-
sembly by detecting and masking variations between seemingly related strains. Consen-
sus assemblies as opposed to strain assemblies have both advantages and disadvantages
for downstream analysis.

Strain assemblies:

• Pros: ability to accurately reconstruct information about individual strains
• Cons: assembly quality is often inferior due to long unresolved repeats

Consensus assemblies:

• Pros: ability to reconstruct the backbone structure of the species genome
• Cons: can result in annotation artifacts and lose information about individual strains

The set of output files of metaSPAdes is exactly the same as that of SPAdes. However
the files contigs.fasta and scaffolds.fasta contain the consensus assembly
representing the backbone structure of a metagenome.

Understanding rnaSPAdes Output

Most files in rnaSPAdes output are the same as the ones produced by genomic SPAdes.
However, instead of contigs and scaffolds, rnaSPAdes produces transcript sequences,
which are written to transcripts.fasta. Corresponding paths in the assembly
graph are stored in the transcripts.paths file.

Beside length and coverage, sequence IDs in the FASTA file also have additional in-
formation. Each FASTA header contains a gene id (follows after _g) and an iso-
form number within this gene (follows after _i). For example, sequence header
NODE_41_length_1352_cov_13.370137_g53_i2 means that this particular
transcript is the isoform #2 in the gene with ID=53 (numbering starts with 0 for both).
Isoforms of the same gene must have at least 300 common consecutive nucleotides, which
means that transcripts of paralogous genes are often classified as alternative isoforms of
a single gene. Moreover, isoforms of short genes may not be grouped together.

In addition to transcripts.fasta, rnaSPAdes produces hard_filtered_
transcripts.fasta and soft_filtered_transcripts.fasta. The first
file is generated by applying stronger coverage and length filters to the original se-
quences from transcripts.fasta. The second one includes low-covered and short
sequences in addition to all transcripts from transcripts.fasta. Exact parame-
ters used for filtering assembled sequences are given in the supplementary material of
Bushmanova et al. (2019).

In case of properly used strand-specific data, all transcripts are expected to have the same
orientation (strand) as the original RNA molecule that it was sequenced from.

Understanding plasmidSPAdes and metaplasmidSPAdes Output

plasmidSPAdes and metaplasmidSPAdes output only DNA sequences of putative plas-
mids. Output file names and formats remain the same as in SPAdes (see previous sec-
tions), with the following differences. Prjibelski et al.

23 of 29

Current Protocols in Bioinformatics



For all contig names in contigs.fasta, scaffolds.fasta, and assem-
bly_graph.fastg, plasmidSPAdes appends a suffix of the form _component_X,
where X is the identifier of the putative plasmid that the contig belongs to. Note that
plasmidSPAdes may not be able to separate similar plasmids, and thus their contigs may
appear with the same identifier.

For metaplasmidSPAdes, only complete putative plasmids (i.e., circular contigs) are out-
put, so the_component_X suffix is not attached.

Understanding biosyntheticSPAdes Output

In addition to the files outlined above biosyntheticSPAdes outputs three files of interest:

• gene_clusters.fasta – contains DNA sequences from putative biosynthetic
gene clusters (BGC). Since each sample may contain multiple BGCs, and biosyn-
theticSPAdes can output several putative DNA sequences for each cluster, for each
contig name we append the suffix _cluster_X_candidate_Y, where X is the
identifier of the BGC and Y is the identifier of the candidate from the BGC.

• bgc_statistics.txt – contains statistics about BGC composition in the sam-
ple. First, it outputs number of domain hits in the sample. Then, for each BGC can-
didate we output domain order, with positions on the corresponding DNA sequence
from gene_clusters.fasta.

• domain_graph.dot – contains domain graph structure, which can be used to
assess complexity of the sample and structure of BGCs. For more information about
domain graph construction, please refer to the original article (Meleshko et al., 2019).

COMMENTARY

Background Information
SPAdes development began back in 2011

with a group of young Russian researchers
under the supervision of Prof. Pavel Pevzner
from UCSD. The assembler takes its name
from the city where the lab is located—St. Pe-
tersburg Assembler. The original goal was
to develop an assembly method for a novel
type of data—single-cell bacterial sequenc-
ing performed via the Multiple Displacement
Amplification protocol (Lasken, 2007). Dur-
ing development, it appeared that most of
the designed algorithms and techniques were
well suited for assembling conventional iso-
late bacterial data as well.

As more and more algorithms were de-
veloped, SPAdes turned into a large univer-
sal assembly framework containing multiple
different computational methods. Thus, con-
struction of novel pipelines for different types
of data became a logical continuation of the
lab’s research. Later on, SPAdes accumu-
lated various algorithms for repeat resolving
and scaffolding, hybrid assembly, assembly of
metagenomes and transcriptomes, detection of
putative plasmids in WGS and metagenomic
data, etc.

As multiple assembly tools were devel-
oped, the problem of choosing the optimal
computational method for each particular
type of assembly became more challeng-

ing and important. Thus, special tools were
created for quality assessment of genome
(Gurevich, Saveliev, Vyahhi, & Tesler, 2014),
metagenome (Mikheenko, Saveliev, & Gure-
vich, 2016), and transcriptome de novo
assemblies (Bushmanova, Antipov, Lapidus,
Suvorov, & Prjibelski, 2016; Smith-Unna,
Boursnell, Patro, Hibberd, & Kelly, 2016).
In addition, several independent studies
performed comparisons between different
assembly tools. For example, comparison
between assembly tools on bacterial datasets
was performed in a GAGE-B study (Magoc
et al., 2013). Another recent paper presents a
comprehensive comparison between various
transcriptome assemblers on multiple RNA-
seq datasets obtained from different species
(Hölzer & Marz, 2019).

Critical Parameters

K-mer size selection
K-mer size is an extremely important

parameter for all de Bruijn graph−based
assemblers. Improperly selected k values
may lead to deterioration of assembly qual-
ity. Selecting the optimal k-mer size is a
non-trivial task, which depends on multiple
different characteristics of the data being
assembled: dataset type (isolate, single-cell,
metagenome etc.), dataset coverage, and read
length. Moreover, different assemblers may

Prjibelski et al.

24 of 29

Current Protocols in Bioinformatics



produce optimal results on the same dataset
with completely different k values.

The SPAdes assembler implements itera-
tive graph construction with multiple k-mer
sizes. First, it constructs an assembly graph
with a rather small k value, and passes the
resulting edge sequences as an input (along
with all reads) to the next iteration with larger
k. Once the assembly graph with the final
(largest) k-mer size is constructed, SPAdes
performs repeat resolution and scaffolding. In
other words, SPAdes uses all the information
from all k-mer sizes; it does not merely “select
best k-mer size from the set” like, e.g., Velvet
Optimizer.

Every pipeline implemented in the SPAdes
package automatically detects a set of nearly
optimal k-mer sizes depending on data type
and read length. For example, when assem-
bling conventional Illumina sequencing data,
SPAdes uses k =21,33,55 when read length is
less than 150 bp. For read length varying be-
tween 150 bp and 249 bp, k = 21,33,55,77 are
used. For 250-bp reads or longer, SPAdes sets
k = 21,33,55,77,99,127. Alternatively, rnaS-
PAdes pipeline always uses two k-mer sizes,
the lower of which is set to one-third of read
length and the larger one equal to one-half of
read length.

Although these sets of k-mer sizes may not
give the best results in absolutely all cases,
they seem to provide nearly optimal assem-
blies on most of the tested datasets. Thus, we
highly recommend not to change this parame-
ter, unless you are completely sure. If you fi-
nally decide to set k-mer sizes manually, use
the -k option. All k values must be odd, must
be provided in ascending order, and be larger
than 10 and less than 128.

In general, it is not recommended to change
the default set of k-mer values unless it is
explicitly necessary for some reason. Also,
the tools that do automatic selection of a sin-
gle k-mer length, like KmerGenie (Chikhi &
Medvedev, 2013) are not designed to be used
with multi k-mer assemblers like SPAdes, and
therefore their use is not advised. We also
refrain from using the famous N50 statistics
for selecting the best k-mer size, as larger k-
mer sizes might provide better N50 at a price
of much elevated mis-assembly, rate due to
coverage gaps in low-covered regions of a
genome.

Correcting sequencing errors in input
reads

Correcting sequencing errors in reads prior
to the assembly can be done in order to

increase assembler’s performance and accu-
racy. The SPAdes package includes two mod-
ules for read-error correction: BayesHam-
mer (Nikolenko, Korobeynikov, & Alekseyev,
2013) for correcting Illumina reads and Ion-
Hammer (Ershov et al., 2019) for correcting
IonTorrent data.

Each pipeline implemented in SPAdes au-
tomatically launches the error-correction pro-
cedure if needed. However, if your reads were
already trimmed or pre-corrected by another
tool, you may turn off the error correction
stage by using --only-assembler flag.

In addition, if you do not need to per-
form the assembly, you may run only
the error-correction module by setting
--only-error-correction flag when
running SPAdes. BayesHammer (Illumina
error correction) is launched by default. To
launch the IonTorrent error correction module
IonHammer, set --iontorrent flag.

Reducing the number of mismatch and
short indel errors in the assembly

The SPAdes package also includes a Mis-
matchCorrector module for polishing the re-
sulting assemblies, which maps raw reads onto
the assembled sequences and corrects mis-
matches and short indels. To enable assembly
polishing, set the --careful flag. Note, that
this option can be used only when running the
standard genome-assembly SPAdes pipeline.

Troubleshooting
The assembly process is a complex task,

with success depending on both the qual-
ity of input data and available resources.
Many things could go wrong, and it is
extremely important to carefully read the
spades.log file for the possible errors,
as SPAdes tries to provide meaningful er-
ror messages in the majority of common
cases. We outline some of these below. Still,
if the error message appears to be cryp-
tic, we suggest contacting the SPAdes sup-
port team at spades.support@cab.spbu.ru or
opening an issue at https://github.com/ablab/
spades/ issues, attaching the spades.log
and params.txt files from the output direc-
tory for further explanation.

Corrupted input files
One needs to ensure that the input to

SPAdes is correct both structurally and log-
ically. In particular, the input files should
be in the correct FASTA/FASTQ formats;
otherwise, the following errors might be
observed: Prjibelski et al.

25 of 29

Current Protocols in Bioinformatics

https://github.com/ablab/spades/issues
https://github.com/ablab/spades/issues


• the length of the sequence line for some
read in the FASTQ file does not correspond to
the length of the quality line;

• inability of SPAdes to detect the Phred off-
set of FASTQ file

Also, the left reads of paired-end datasets
should correspond to the right ones. This cor-
respondence is typically broken when using
non-paired-end trimmers or other filtering or
pre-processing tools. As a result, the number
of left and right reads in the files will be dif-
ferent and SPAdes will end with an error.

Typically SPAdes will provide meaningful
error messages in these cases. These errors are
fatal, and essentially the only solution in this
case is making the input correct. This involves
stepping back in the computational pipeline
and fixing whatever caused the broken input
files.

Out-of-memory errors
These kinds of errors are probably the ones

occurring most often. As outlined above, it is
usually impossible to estimate the amount of
memory needed solely from the size of the in-
put files. Still, SPAdes tries to do its best, and
where possible estimate the necessary amount
of memory for the next steps. If it is deter-
mined that the selected hard memory limit
(see Advanced Options) will not allow pro-
ceeding with the next step, then SPAdes ter-
minates prematurely, allowing the user to ei-
ther increase the memory limit and restart (see
Support Protocol 4) or move to a larger ma-
chine.

Unfortunately, it is not always possible to
provide a meaningful error message in the case
of out-of-memory errors, as producing such a
message would require additional memory al-
location. Even more, some resource manage-
ment systems as seen on computational clus-
ters would kill the SPAdes job should it try to
overshoot the memory, precluding any proper
error reporting. In addition, sometimes there
is some free RAM available on the system
available, but due to memory fragmentation,
the operating system might be unable to ful-
fil SPAdes’ request to allocate a single large
chunk of memory. There is no way to over-
come this error, and therefore the SPAdes pro-
cess will terminate.

The only viable solution to these prob-
lems is to allocate more RAM, either on
the same machine or by moving to a larger
one. Another possibility (although with dif-
ferent results) is to try to perform some
filtering of the input data to reduce its

complexity. Heavy quality trimming and/or re-
moving low-covered reads (for example us-
ing the spades-read-filter tool) might
help; however, the assembly results might ap-
pear suboptimal.

I/O problems
SPAdes uses disk storage for scratch inter-

mediate files and accesses input reads several
times at different steps of the pipeline. It is
extremely important to ensure that all these
files are being written and read without prob-
lems. Many internal consistency checks are
introduced, and therefore I/O errors usually
cause them to fail. While these errors are fatal,
usually they are transient and therefore could
simply be “fixed” by a restart. Otherwise, we
suggest contacting your local system ad-
ministrator for possible solutions to these
problems.

Problems with the orientation of
paired-end reads

Sometimes the orientation of paired-
end reads is non-standard (e.g., not default
forward-reverse) and needs to be specified
explicitly. The happens more often for mate
pairs, as their orientation could be specific to a
particular library preparation and sequencing
protocol. While SPAdes provides a sensible
default, it also tries to detect whether the
orientation of paired-end reads or mate-pairs
is specified properly. If not, then typically
the warning about negative insert size is dis-
played, and the user is advised to check if the
orientation is specified properly.

Problems with fragment length
distribution

SPAdes relies on the fragment length dis-
tribution of paired-end reads for its repeat
resolution and scaffolding process. Since the
fragment length is not known in advance, it es-
timates it via aligning paired-end reads to the
long edges of the assembly graph. Sometimes,
no paired reads can be aligned to the edges of
the assembly graph. There are several possi-
bilities for why this could happen:

• Very fragmented assembly: all long edges
of an assembly graph are shorter than the typ-
ical fragment length.

• The input reads are corrupted, as the left
reads do not correspond to the right ones.

The user is then advised to check parame-
ters used and input data to find and solve pos-
sible problems (e.g., using a non-paired-end
aware filtering tool).

Prjibelski et al.

26 of 29

Current Protocols in Bioinformatics



Uneven coverage
Some modes of the SPAdes pipeline (e.g.,

isolate and normal multicell mode as well as
plasmidSPAdes) rely on the uniform coverage
of a genome in question. This assumption is
used everywhere in the pipeline, and the as-
sembly results might be bad if it is violated.
There are many reasons for uneven coverage:

• Contamination
• Sequencing bias and artifacts
• Assembling just a subset of some reads

(e.g., aligned to a particular database) and not
the whole genome or a large part of it.

SPAdes tries to detect whether the assump-
tion of uniform coverage is violated in any
places in the pipeline both prior to and after
assembly. Sometimes the violation could be
considered fatal; sometimes only a warning is
issued. While a user could overcome the er-
rors by switching to aSPAdes modes that does
not use the assumption of even coverage (e.g.,
single cell mode or metaSPAdes), it is strongly
recommended to try to understand the reason
for uneven coverage, as it could easily lead to
suboptimal assembly results.

Advanced Parameters
Beside input data parameters (see Sup-

port Protocols 2 and 3) and several impor-
tant options (described in Critical Parameters),
SPAdes has additional options, which are not
required to be set during the assembly, but may
be used to optimize the process.

• -t sets the number of threads (default is
16 or the number of CPU cores on the system,
whichever is less)

• -m sets RAM upper limit in gigabytes (de-
fault is 250 or the total amount of RAM avail-
able, whichever is less); SPAdes will halt if the
memory limit is exceeded

• --disable-gzip-output disables
compression of error-corrected reads

• --disable-rr turns off repeat resolu-
tion and scaffolding stage

• --sc enables pipeline for assembling
single-cell data obtained via the MDA proto-
col

• --tmp-dir sets destination for tempo-
rary files (default is output_dir/tmp)

• --cov-cutoff sets read-coverage cut-
off: can be positive float number, or ‘auto’, or
‘off’ (default is off).

Acknowledgments
This work was supported by the Russian

Fund for Basic Research (grant 18-54-74004).
Research was carried out in part by computa-
tional resources provided by Resource Center

“Computer Center of SPbU.” The authors are
grateful to Saint Petersburg State University
for the overall support of this work (project id:
51555639).

Literature Cited
Antipov, D., Hartwick, N., Shen, M., Raiko,

M., Lapidus, A., & Pevzner, P. (2016). Plas-
midSPAdes: Assembling plasmids from whole
genome sequencing data. Bioinformatics,
32(22), 3380–3387.

Antipov, D., Korobeynikov, A., McLean, J. S., &
Pevzner, P. A. (2015). hybridSPAdes: An al-
gorithm for hybrid assembly of short and long
reads. Bioinformatics, 32(7), 1009–1015. doi:
10.1093/bioinformatics/btv688.

Antipov, D., Raiko, M., Lapidus, A., & Pevzner,
P. A. (2019). Plasmid detection and assem-
bly in genomic and metagenomic data sets.
Genome Research, 29(6), 961–968. doi: 10.
1101/gr.241299.118.

Bushmanova, E., Antipov, D., Lapidus, A., & Pr-
jibelski, A. D. (2019). rnaSPAdes: A de novo
transcriptome assembler and its application to
rna-seq data. GigaScience, 8(9), giz100. doi:
10.1093/gigascience/giz100.

Bushmanova, E., Antipov, D., Lapidus, A.,
Suvorov, V., & Prjibelski, A. D. (2016).
rnaQUAST: A quality assessment tool for
de novo transcriptome assemblies. Bioinfor-
matics, 32(14), 2210–2212. doi: 10.1093/
bioinformatics/btw218.

Bushnell, B., Rood, J., & Singer, E. (2017). BB-
Merge: Accurate paired shotgun read merging
via overlap. PloS One, 12(10), e0185056. doi:
10.1371/journal.pone.0185056.

Chikhi, R., & Medvedev, P. (2013). Informed and
automated k-mer size selection for genome as-
semble. Bioinformatics, 30(1), 31–37. doi: 10.
1093/bioinformatics/btt310.

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow,
J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013).
Star: Ultrafast universal rna-seq aligner. Bioin-
formatics, 29(1), 15–21.

Ershov, V., Tarasov, A., Lapidus, A., &
Korobeynikov, A. (2019). IonHammer:
Homopolymer-space hamming clustering for
iontorrent read error correction. Journal of
Computational Biology, 26(2), 124–127. doi:
10.1089/cmb.2018.0152.

Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler,
G. (2013). QUAST: Quality assessment tool for
genome assemblies. Bioinformatics, 29, 1072–
1075. doi: 10.1093/bioinformatics/btt086.

Hölzer, M., & Marz, M. (2019). De novo tran-
scriptome assembly: A comprehensive cross-
species comparison of short-read rna-seq assem-
blers. GigaScience, 8(5), giz039. doi: 10.1093/
gigascience/giz039.

Kim, D., Langmead, B., & Salzberg, S. L. (2015).
Hisat: A fast spliced aligner with low memory
requirements. Nature Methods, 12(4), 357.

Lasken, R. S. (2007). Single-cell genomic sequenc-
ing using Multiple Displacement Amplification. Prjibelski et al.

27 of 29

Current Protocols in Bioinformatics

http://doi.org/10.1093/bioinformatics/btv688
http://doi.org/10.1101/gr.241299.118
http://doi.org/10.1101/gr.241299.118
http://doi.org/10.1093/gigascience/giz100
http://doi.org/10.1093/bioinformatics/btw218
http://doi.org/10.1093/bioinformatics/btw218
http://doi.org/10.1371/journal.pone.0185056
http://doi.org/10.1093/bioinformatics/btt310
http://doi.org/10.1093/bioinformatics/btt310
http://doi.org/10.1089/cmb.2018.0152
http://doi.org/10.1093/bioinformatics/btt086
http://doi.org/10.1093/gigascience/giz039
http://doi.org/10.1093/gigascience/giz039


Current Opinion in Microbiology, 10, 510–516.
doi: 10.1016/j.mib.2007.08.005.

Li, H., Handsaker, B., Wysoker, A., Fennell, T.,
Ruan, J., Homer, N., … Durbin, R. (2009).
The sequence alignment/map format and SAM-
tools. Bioinformatics, 25(16), 2078–2079. doi:
10.1093/bioinformatics/btp352.

Magoc, T., Pabinger, S., Canzar, S., Liu, X., Su, Q.,
Puiu, D., … Salzberg, S. L. (2013). GAGE-B:
An evaluation of genome assemblers for bac-
terial organisms. Bioinformatics, 29(14), 1718–
1725. doi: 10.1093/bioinformatics/btt273.

Meleshko, D., Mohimani, H., Tracanna, V., Haji-
rasouliha, I., Medema, M. H., Korobeynikov,
A., & Pevzner, P. A. (2019). Biosynthetic-
SPAdes: Reconstructing biosynthetic gene clus-
ters from assembly graphs. Genome Research,
29(8), 1352–1362. doi: 10.1101/gr.243477.118.

Mikheenko, A., Saveliev, V., & Gurevich, A.
(2016). Metaquast: Evaluation of metagenome
assemblies. Bioinformatics, 32(7), 1088–1090.
doi: 10.1093/bioinformatics/btv697.

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen,
E., Thurman, R. E., & Johnson, A. K. …
others.(2012) BEDOPS: High-performance
genomic feature operations. Bioinfor-
matics, 28(14), 1919–1920. doi: 10.1093/
bioinformatics/bts277.

Nikolenko, S., Korobeynikov, A., & Alekseyev,
M. (2013). BayesHammer: Bayesian cluster-
ing for error correction in single-cell sequenc-
ing. BMC Genomics, 14, S7. doi: 10.1186/
1471-2164-14-S1-S7.

Nurk, S., Bankevich, A., Antipov, D., Gurevich, A.
A., Korobeynikov, A., Lapidus, A., … Pevzner,
P. A. (2013). Assembling single-cell genomes
and mini-metagenomes from chimeric MDA
products. Journal of Computational Biology,
20(10), 714–737. doi: 10.1089/cmb.2013.0084.

Nurk, S., Meleshko, D., Korobeynikov, A.,
& Pevzner, P. A. (2017). metaSPAdes:
A new versatile metagenomic assembler.
Genome Research, 27(5), 824–834. doi:
10.1101/gr.213959.116.

Prjibelski, A. D., Puglia, G. D., Antipov, D., Bush-
manova, E., Giordano, D., Mikheenko, A., …
Lapidus, A. (2019). Extending rnaSPAdes func-
tionality for hybrid transcriptome assembly.
BMC Bioinformatics, 20(S17), 2.

Prjibelski, A. D., Vasilinetc, I., Bankevich, A.,
Gurevich, A., Krivosheeva, T., Nurk, S., …
Pevzner, P. A. (2014). ExSPAnder: A univer-
sal repeat resolver for DNA fragment assem-
bly. Bioinformatics, 30(12), i293–i301. doi: 10.
1093/bioinformatics/btu266.

Prjibelski, A. D., Korobeynikov, A. I., & Lapidus,
A. L. (2019). Sequence analysis. Encyclopedia
of Bioinformatics and Computational Biology,
3, 292–322. doi: 10.1016/B978-0-12-809633-8.
20106-4.

Smith-Unna, R., Boursnell, C., Patro, R., Hib-
berd, J. M., & Kelly, S. (2016). TransRate:
Reference-free quality assessment of de novo

transcriptome assemblies. Genome Research,
2(8), 1134–1144. doi: 10.1101/gr.196469.115.

Vasilinetc, I., Prjibelski, A. D., Gurevich, A., Ko-
robeynikov, A., & Pevzner, P. A. (2015). As-
sembling short reads from jumping libraries
with large insert sizes. Bioinformatics, 31(20),
3262–3268. doi: 10.1093/bioinformatics/btv3
37.

Wang, L., Wang, S., & Li, W. (2012). RSeQC:
Quality control of RNA-seq experiments. Bioin-
formatics, 28(16), 2184–2185. doi: 10.1093/
bioinformatics/bts356.

Wick, R. R., Schultz, M. B., Zobel, J., & Holt,
K. E. (2015). Bandage: Interactive visualiza-
tion of de novo genome assemblies. Bioin-
formatics, 31(20), 3350–3352. doi: 10.1093/
bioinformatics/btv383.

Key References
Antipov et al. (2015). See above.
This paper describes algorithm for hybrid (NGS

data accomplished with third generation se-
quencing data) assembly used in SPAdes.

Antipov et al. (2016). See above.
This paper describes SPAdes modification for ex-

traction and better assembly of plasmid data
from bacterial datasets.

Antipov et al. (2019). See above.
This follow-up paper describes updates for plas-

midSPAdes (Antipov et al., 2016) that allow to
extract plasmids from metagenomic datasets.

Bushmanova et al. (2019). See above.
This paper describes modifications of SPAdes algo-

rithm for RNA data assembly.

Bushmanova et al. (2020). See above.
This paper updated follow-up paper for hybrid

(NGS data with third generation sequencing
data) RNA assembly.

Ershov et al. (2019). See above.
This follow-up paper describes further updates

to BayesHammer algorithm (Nikolenko et al.,
2013) for correction of IonTorrent data.

Meleshko et al. (2019). See above.
This paper describes BiosyntheticSPAdes algo-

rithms for assembly of complex biosynthetic
gene clusters.

Nikolenko et al. (2013). See above.
This paper describes in detail the read error cor-

rection stage of SPAdes.

Nurk et al. (2013). See above.
This follow-up paper provides more details on

SPAdes algorithms that are used for single-cell
datasets and mini-metagenomes.

Nurk et al. (2017). See above.
This paper is devoted to SPAdes algorithm modifi-

cations for metagenomic dataset assembly.

Prjibelski et al. (2014). See above.
This paper describes an algorithm for utilization of

paired-end information in SPAdes.

Vasilinetc et al. (2015). See above.
Prjibelski et al.

28 of 29

Current Protocols in Bioinformatics

http://doi.org/10.1016/j.mib.2007.08.005
http://doi.org/10.1093/bioinformatics/btp352
http://doi.org/10.1093/bioinformatics/btt273
http://doi.org/10.1101/gr.243477.118
http://doi.org/10.1093/bioinformatics/btv697
http://doi.org/10.1093/bioinformatics/bts277
http://doi.org/10.1093/bioinformatics/bts277
http://doi.org/10.1186/1471-2164-14-S1-S7
http://doi.org/10.1186/1471-2164-14-S1-S7
http://doi.org/10.1089/cmb.2013.0084
http://doi.org/10.1101/gr.213959.116
http://doi.org/10.1093/bioinformatics/btu266
http://doi.org/10.1093/bioinformatics/btu266
http://doi.org/10.1016/B978-0-12-809633-8.20106-4
http://doi.org/10.1016/B978-0-12-809633-8.20106-4
http://doi.org/10.1101/gr.196469.115
http://doi.org/10.1093/bioinformatics/btv337
http://doi.org/10.1093/bioinformatics/btv337
http://doi.org/10.1093/bioinformatics/bts356
http://doi.org/10.1093/bioinformatics/bts356
http://doi.org/10.1093/bioinformatics/btv383
http://doi.org/10.1093/bioinformatics/btv383


This follow-up paper updates PathExtend (Prjibel-
ski et al., 2014) with an algorithm for mate-pair
(large insert-size paired end) reads.

Internet Resources
http://cab.spbu.ru/software/spades/
Center for Algorithmic Biotechnology website.

On this webpage, you can find links, manu-

als, benchmarks, reviews, download binaries,
etc.

https://github.com/ablab/spades
A GitHub repository for SPAdes assembler. Con-

tains manuals and allows you to download pre-
vious release versions, as well as SPAdes ver-
sions used in journal articles.

Prjibelski et al.

29 of 29

Current Protocols in Bioinformatics

http://cab.spbu.ru/software/spades/
https://github.com/ablab/spades

