autokeras v1.0.1: Implements an interface to AutoKeras, an open source software library for automated machine learning. See README for an example.
MTPS v0.1.9: Implements functions to predict simultaneous multiple outcomes based on revised stacking algorithms as described in Xing et al. (2019). See the vignette to get started.
quanteda.textmodels v0.9.1: Implements methods for scaling models and classifiers based on sparse matrix objects representing textual data. It includes implementations of the Laver et al. (2003) wordscores model, the Perry & Benoit’s (2017) class affinity scaling model, and the Slapin & Proksch (2008) wordfish model. See the vignette to get started.
SeqDetect v1.0.7: Implements the automaton model found in Krleža, Vrdoljak & Brčić (2019) to detect and process sequences. See the vignette for examples and theory.
studyStrap v1.0.0: Implements multi-Study Learning algorithms such as Merging, Study-Specific Ensembling (Trained-on-Observed-Studies Ensemble), the Study Strap, and the Covariate-Matched Study Strap. and offers over 20 similarity measures. See Kishida, et al. (2019) for background and the vignette for how to use the package.