Alternative content
With the EGAD (Extending ‘Guilt-by-Association’ by Degree) package, we present a series of highly efficient tools to calculate functional properties in networks based on the guilt-by-association principle. These allow rapid controlled comparisons and analyses. Two of the core features are: a function prediction algorithm which is fully vectorized (neighbor_voting), allowing network characterization across even thousands of functional groups to be accomplished in minutes in cross-validation and an analytic determination of the optimal prior to guess candidates genes across multiple functional sets (calculate_multifunc, auc_multifunc).