Alternative content
#!/usr/local/bin/perl -w
####################################################
#MLP neural network in Perl Original source code by Phil Brierley
#Translated into perl - ccolbourn Oct 2004
####################################################
#Tanh hidden neurons
#Linear output neuron
#To include an input bias create an
#extra input in the training data
#and set to 1
################ User settings #########
my $numEpochs = 500;
my $numHidden = 4;
my $LR_IH = 0.7;
my $LR_HO = 0.07;
################ Data dependent settings #########
my $numInputs = 3;
my $numPatterns = 4;
########################################
my $patNum;
my $errThisPat;
my $outPred;
my $RMSerror;
my @trainInputs;
my @trainOutput;
# the outputs of the hidden neurons
my @hiddenVal;
# the weights
my @weightsIH;
my @weightsHO;
main();
#==============================================================
#********** THIS IS THE MAIN PROGRAM **************************
#==============================================================
sub main
{
# initiate the weights
initWeights();
# load in the data
initData();
# train the network
for(my $j = 0;$j <= $numEpochs;$j++)
{
for(my $i = 0;$i<$numPatterns;$i++)
{
#select a pattern at random
$patNum = (rand()*$numPatterns)-0.001;
#calculate the current network output
#and error for this pattern
calcNet();
#change network weights
WeightChangesHO();
WeightChangesIH();
}
#display the overall network error
#after each epoch
calcOverallError();
print "epoch = ".$j." RMS Error = ".$RMSerror."\n";
}
#training has finished
#display the results
displayResults();
}
#============================================================
#********** END OF THE MAIN PROGRAM **************************
#=============================================================
#***********************************
sub calcNet()
{
#calculate the outputs of the hidden neurons
#the hidden neurons are tanh
for(my $i = 0;$i<$numHidden;$i++)
{
$hiddenVal[$i] = 0.0;
for(my $j = 0;$j<$numInputs;$j++)
{
$hiddenVal[$i] = $hiddenVal[$i] + ($trainInputs[$patNum][$j] * $weightsIH[$j][$i]);
}
$hiddenVal[$i] = tanh($hiddenVal[$i]);
}
#calculate the output of the network
#the output neuron is linear
$outPred = 0.0;
for(my $i = 0;$i<$numHidden;$i++)
{
$outPred = $outPred + $hiddenVal[$i] * $weightsHO[$i];
}
#calculate the error
$errThisPat = $outPred - $trainOutput[$patNum];
}
#************************************
sub WeightChangesHO()
#adjust the weights hidden-output
{
for(my $k = 0;$k<$numHidden;$k++)
{
$weightChange = $LR_HO * $errThisPat * $hiddenVal[$k];
$weightsHO[$k] = $weightsHO[$k] - $weightChange;
#regularisation on the output weights
if ($weightsHO[$k] < -5)
{
$weightsHO[$k] = -5;
}
elsif ($weightsHO[$k] > 5)
{
$weightsHO[$k] = 5;
}
}
}
#************************************
sub WeightChangesIH()
#adjust the weights input-hidden
{
for(my $i = 0;$i<$numHidden;$i++)
{
for(my $k = 0;$k<$numInputs;$k++)
{
my $x = 1 - ($hiddenVal[$i] * $hiddenVal[$i]);
$x = $x * $weightsHO[$i] * $errThisPat * $LR_IH;
$x = $x * $trainInputs[$patNum][$k];
my $weightChange = $x;
$weightsIH[$k][$i] = $weightsIH[$k][$i] - $weightChange;
}
}
}
#************************************
sub initWeights()
{
for(my $j = 0;$j<$numHidden;$j++)
{
$weightsHO[$j] = (rand() - 0.5)/2;
for(my $i = 0;$i<$numInputs;$i++)
{
$weightsIH[$i][$j] = (rand() - 0.5)/5;
}
}
}
#************************************
sub initData()
{
print "initialising data\n";
# the data here is the XOR data
# it has been rescaled to the range
# [-1][1]
# an extra input valued 1 is also added
# to act as the bias
# the output must lie in the range -1 to 1
$trainInputs[0][0] = 1;
$trainInputs[0][1] = -1;
$trainInputs[0][2] = 1; #bias
$trainOutput[0] = 1;
$trainInputs[1][0] = -1;
$trainInputs[1][1] = 1;
$trainInputs[1][2] = 1; #bias
$trainOutput[1] = 1;
$trainInputs[2][0] = 1;
$trainInputs[2][1] = 1;
$trainInputs[2][2] = 1; #bias
$trainOutput[2] = -1;
$trainInputs[3][0] = -1;
$trainInputs[3][1] = -1;
$trainInputs[3][2] = 1; #bias
$trainOutput[3] = -1;
}
#************************************
sub tanh()
{
my $x = shift;
if ($x > 20){ return 1;}
elsif ($x < -20){ return -1;}
else
{
my $a = exp($x);
my $b = exp(-$x);
return ($a-$b)/($a+$b);
}
}
#************************************
sub displayResults()
{
for(my $i = 0;$i<$numPatterns;$i++)
{
$patNum = $i;
calcNet();
print "pat = ".($patNum+1)." actual = ".$trainOutput[$patNum]." neural model = ".$outPred."\n";
}
}
#************************************
sub calcOverallError()
{
$RMSerror = 0.0;
for(my $i = 0;$i<$numPatterns;$i++)
{
$patNum = $i;
calcNet();
$RMSerror = $RMSerror + ($errThisPat * $errThisPat);
}
$RMSerror = $RMSerror/$numPatterns;
$RMSerror = sqrt($RMSerror);
}