Our Sponsors



Download BioinformaticsOnline(BOL) Apps in your chrome browser.




  • BioScripts
  • Jit
  • A multilayer perceptron (MLP) neural network in Perl

A multilayer perceptron (MLP) neural network in Perl

  • Public
By Jit 3121 days ago
#!/usr/local/bin/perl -w #################################################### #MLP neural network in Perl Original source code by Phil Brierley #Translated into perl - ccolbourn Oct 2004 #################################################### #Tanh hidden neurons #Linear output neuron #To include an input bias create an #extra input in the training data #and set to 1 ################ User settings ######### my $numEpochs = 500; my $numHidden = 4; my $LR_IH = 0.7; my $LR_HO = 0.07; ################ Data dependent settings ######### my $numInputs = 3; my $numPatterns = 4; ######################################## my $patNum; my $errThisPat; my $outPred; my $RMSerror; my @trainInputs; my @trainOutput; # the outputs of the hidden neurons my @hiddenVal; # the weights my @weightsIH; my @weightsHO; main(); #============================================================== #********** THIS IS THE MAIN PROGRAM ************************** #============================================================== sub main { # initiate the weights initWeights(); # load in the data initData(); # train the network for(my $j = 0;$j <= $numEpochs;$j++) { for(my $i = 0;$i<$numPatterns;$i++) { #select a pattern at random $patNum = (rand()*$numPatterns)-0.001; #calculate the current network output #and error for this pattern calcNet(); #change network weights WeightChangesHO(); WeightChangesIH(); } #display the overall network error #after each epoch calcOverallError(); print "epoch = ".$j." RMS Error = ".$RMSerror."\n"; } #training has finished #display the results displayResults(); } #============================================================ #********** END OF THE MAIN PROGRAM ************************** #============================================================= #*********************************** sub calcNet() { #calculate the outputs of the hidden neurons #the hidden neurons are tanh for(my $i = 0;$i<$numHidden;$i++) { $hiddenVal[$i] = 0.0; for(my $j = 0;$j<$numInputs;$j++) { $hiddenVal[$i] = $hiddenVal[$i] + ($trainInputs[$patNum][$j] * $weightsIH[$j][$i]); } $hiddenVal[$i] = tanh($hiddenVal[$i]); } #calculate the output of the network #the output neuron is linear $outPred = 0.0; for(my $i = 0;$i<$numHidden;$i++) { $outPred = $outPred + $hiddenVal[$i] * $weightsHO[$i]; } #calculate the error $errThisPat = $outPred - $trainOutput[$patNum]; } #************************************ sub WeightChangesHO() #adjust the weights hidden-output { for(my $k = 0;$k<$numHidden;$k++) { $weightChange = $LR_HO * $errThisPat * $hiddenVal[$k]; $weightsHO[$k] = $weightsHO[$k] - $weightChange; #regularisation on the output weights if ($weightsHO[$k] < -5) { $weightsHO[$k] = -5; } elsif ($weightsHO[$k] > 5) { $weightsHO[$k] = 5; } } } #************************************ sub WeightChangesIH() #adjust the weights input-hidden { for(my $i = 0;$i<$numHidden;$i++) { for(my $k = 0;$k<$numInputs;$k++) { my $x = 1 - ($hiddenVal[$i] * $hiddenVal[$i]); $x = $x * $weightsHO[$i] * $errThisPat * $LR_IH; $x = $x * $trainInputs[$patNum][$k]; my $weightChange = $x; $weightsIH[$k][$i] = $weightsIH[$k][$i] - $weightChange; } } } #************************************ sub initWeights() { for(my $j = 0;$j<$numHidden;$j++) { $weightsHO[$j] = (rand() - 0.5)/2; for(my $i = 0;$i<$numInputs;$i++) { $weightsIH[$i][$j] = (rand() - 0.5)/5; } } } #************************************ sub initData() { print "initialising data\n"; # the data here is the XOR data # it has been rescaled to the range # [-1][1] # an extra input valued 1 is also added # to act as the bias # the output must lie in the range -1 to 1 $trainInputs[0][0] = 1; $trainInputs[0][1] = -1; $trainInputs[0][2] = 1; #bias $trainOutput[0] = 1; $trainInputs[1][0] = -1; $trainInputs[1][1] = 1; $trainInputs[1][2] = 1; #bias $trainOutput[1] = 1; $trainInputs[2][0] = 1; $trainInputs[2][1] = 1; $trainInputs[2][2] = 1; #bias $trainOutput[2] = -1; $trainInputs[3][0] = -1; $trainInputs[3][1] = -1; $trainInputs[3][2] = 1; #bias $trainOutput[3] = -1; } #************************************ sub tanh() { my $x = shift; if ($x > 20){ return 1;} elsif ($x < -20){ return -1;} else { my $a = exp($x); my $b = exp(-$x); return ($a-$b)/($a+$b); } } #************************************ sub displayResults() { for(my $i = 0;$i<$numPatterns;$i++) { $patNum = $i; calcNet(); print "pat = ".($patNum+1)." actual = ".$trainOutput[$patNum]." neural model = ".$outPred."\n"; } } #************************************ sub calcOverallError() { $RMSerror = 0.0; for(my $i = 0;$i<$numPatterns;$i++) { $patNum = $i; calcNet(); $RMSerror = $RMSerror + ($errThisPat * $errThisPat); } $RMSerror = $RMSerror/$numPatterns; $RMSerror = sqrt($RMSerror); }