sco.h-its.org - PEAR is an ultrafast, memory-efficient and highly accurate pair-end read merger. It is fully parallelized and can run with as low as just a few kilobytes of memory.
PEAR evaluates all possible paired-end read overlaps and without requiring the...
http://gkno.me/ - gkno opens the world of complex bioinformatic analysis to people of all level of computational expertise. This site contains documentation, tutorials and information on all the tools that comprise gkno.
More at http://gkno.me/
www.biostat.wisc.edu - Our basic strategy in building homology maps is to use exons that are orthologous in multiple genomes as map "anchors." Given K genomes, the steps in the map construction are as follows:
For each genome, obtain a set of exon annotations. These...
brig.sourceforge.net - BRIG is a free cross-platform (Windows/Mac/Unix) application that can display circular comparisons between a large number of genomes, with a focus on handling genome assembly data. The application is available...
sourceforge.net - PBJelly - the genome upgrading tool. PBHoney - the structural variation discovery tool Both are contained within the PBSuite code found in downloads.----- PBJelly -----Read The...
github.com - This project contains scripts and tutorials on how to assemble individual microbial genomes from metagenomes, as described in:
Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomesMads...
ritchielab.psu.edu - With PhenoGram researchers can create chomosomal ideograms annotated with lines in color at specific base-pair locations, or colored base-pair to base-pair regions, with or without other annotation. PhenoGram allows for annotation of chromosomal...
www.jcvi.org - CABOG (Celera Assembler with Best Overlap Graph) is scientific software for DNA research. CABOG has been a critical component of many genome sequencing projects. CABOG operates on small genomes such as bacterial as well as large genomes such as...
github.com - DBG2OLC:Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies
Our work is published in Scientific Reports:
Ye, C. et al. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous...