#Wgd cannot be installed directly with bioconda at present, so it is slightly troublesome to install, because it #depends on a lot of software. wgd depends on the following software
#BLAST
#MCL
#MUSCLE/MAFFT/PRANK
#PAML
#PhyML/FastTree
#i-ADHoRe
#Creat the conda ENV and install its deps
#Follow the steps
(base) ➜ wgd git:(master) conda create -n wgd python=3.7 blast mcl muscle mafft prank paml fasttree cmake libpng mpi=1.0=mpich
Collecting package metadata (current_repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.9.0
latest version: 4.9.2
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /home/anaconda3/envs/wgd
added / updated specs:
- blast
- cmake
- fasttree
- libpng
- mafft
- mcl
- mpi==1.0=mpich
- muscle
- paml
- prank
- python=3.7
The following packages will be downloaded:
package | build
---------------------------|-----------------
boost-1.74.0 | py37he5a615d_2 335 KB conda-forge
boost-cpp-1.74.0 | h9d3c048_1 16.3 MB conda-forge
c-ares-1.17.1 | h36c2ea0_0 111 KB conda-forge
certifi-2020.12.5 | py37h89c1867_1 143 KB conda-forge
cmake-3.19.3 | h4547794_0 14.0 MB conda-forge
libblas-3.9.0 | 7_openblas 11 KB conda-forge
libcblas-3.9.0 | 7_openblas 11 KB conda-forge
libgfortran-ng-9.3.0 | hff62375_18 22 KB conda-forge
libgfortran5-9.3.0 | hff62375_18 2.0 MB conda-forge
liblapack-3.9.0 | 7_openblas 11 KB conda-forge
libnghttp2-1.41.0 | h8cfc5f6_2 774 KB conda-forge
numpy-1.19.5 | py37haa41c4c_1 5.3 MB conda-forge
python-3.7.9 |hffdb5ce_0_cpython 57.3 MB conda-forge
setuptools-49.6.0 | py37h89c1867_3 947 KB conda-forge
------------------------------------------------------------
Total: 97.2 MB
The following NEW packages will be INSTALLED:
_libgcc_mutex conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge
_openmp_mutex conda-forge/linux-64::_openmp_mutex-4.5-1_gnu
blast bioconda/linux-64::blast-2.5.0-hc0b0e79_3
boost conda-forge/linux-64::boost-1.74.0-py37he5a615d_2
boost-cpp conda-forge/linux-64::boost-cpp-1.74.0-h9d3c048_1
bzip2 conda-forge/linux-64::bzip2-1.0.8-h7f98852_4
c-ares conda-forge/linux-64::c-ares-1.17.1-h36c2ea0_0
ca-certificates conda-forge/linux-64::ca-certificates-2020.12.5-ha878542_0
certifi conda-forge/linux-64::certifi-2020.12.5-py37h89c1867_1
cmake conda-forge/linux-64::cmake-3.19.3-h4547794_0
expat conda-forge/linux-64::expat-2.2.9-he1b5a44_2
fasttree bioconda/linux-64::fasttree-2.1.10-h516909a_4
icu conda-forge/linux-64::icu-68.1-h58526e2_0
krb5 conda-forge/linux-64::krb5-1.17.2-h926e7f8_0
ld_impl_linux-64 conda-forge/linux-64::ld_impl_linux-64-2.35.1-hea4e1c9_1
libblas conda-forge/linux-64::libblas-3.9.0-7_openblas
libcblas conda-forge/linux-64::libcblas-3.9.0-7_openblas
libcurl conda-forge/linux-64::libcurl-7.71.1-hcdd3856_8
libedit conda-forge/linux-64::libedit-3.1.20191231-he28a2e2_2
libev conda-forge/linux-64::libev-4.33-h516909a_1
libffi conda-forge/linux-64::libffi-3.3-h58526e2_2
libgcc-ng conda-forge/linux-64::libgcc-ng-9.3.0-h2828fa1_18
libgfortran-ng conda-forge/linux-64::libgfortran-ng-9.3.0-hff62375_18
libgfortran5 conda-forge/linux-64::libgfortran5-9.3.0-hff62375_18
libgomp conda-forge/linux-64::libgomp-9.3.0-h2828fa1_18
liblapack conda-forge/linux-64::liblapack-3.9.0-7_openblas
libnghttp2 conda-forge/linux-64::libnghttp2-1.41.0-h8cfc5f6_2
libopenblas conda-forge/linux-64::libopenblas-0.3.12-pthreads_h4812303_1
libpng conda-forge/linux-64::libpng-1.6.37-h21135ba_2
libssh2 conda-forge/linux-64::libssh2-1.9.0-hab1572f_5
libstdcxx-ng conda-forge/linux-64::libstdcxx-ng-9.3.0-h6de172a_18
libuv conda-forge/linux-64::libuv-1.40.0-h7f98852_0
lz4-c conda-forge/linux-64::lz4-c-1.9.3-h9c3ff4c_0
mafft bioconda/linux-64::mafft-7.475-h516909a_0
mcl bioconda/linux-64::mcl-14.137-pl526h516909a_5
mpi conda-forge/linux-64::mpi-1.0-mpich
muscle bioconda/linux-64::muscle-3.8.1551-hc9558a2_5
ncurses conda-forge/linux-64::ncurses-6.2-h58526e2_4
numpy conda-forge/linux-64::numpy-1.19.5-py37haa41c4c_1
openssl conda-forge/linux-64::openssl-1.1.1i-h7f98852_0
paml bioconda/linux-64::paml-4.9-h516909a_5
perl conda-forge/linux-64::perl-5.26.2-h36c2ea0_1008
pip conda-forge/noarch::pip-20.3.3-pyhd8ed1ab_0
prank bioconda/linux-64::prank-v.170427-hc9558a2_3
python conda-forge/linux-64::python-3.7.9-hffdb5ce_0_cpython
python_abi conda-forge/linux-64::python_abi-3.7-1_cp37m
readline conda-forge/linux-64::readline-8.0-he28a2e2_2
rhash conda-forge/linux-64::rhash-1.4.1-h7f98852_0
setuptools conda-forge/linux-64::setuptools-49.6.0-py37h89c1867_3
sqlite conda-forge/linux-64::sqlite-3.34.0-h74cdb3f_0
tk conda-forge/linux-64::tk-8.6.10-h21135ba_1
wheel conda-forge/noarch::wheel-0.36.2-pyhd3deb0d_0
xz conda-forge/linux-64::xz-5.2.5-h516909a_1
zlib conda-forge/linux-64::zlib-1.2.11-h516909a_1010
zstd conda-forge/linux-64::zstd-1.4.8-ha95c52a_1
Proceed ([y]/n)? y
Downloading and Extracting Packages
libgfortran-ng-9.3.0 | 22 KB | ################################################################################ | 100%
libnghttp2-1.41.0 | 774 KB | ################################################################################ | 100%
libcblas-3.9.0 | 11 KB | ################################################################################ | 100%
liblapack-3.9.0 | 11 KB | ################################################################################ | 100%
certifi-2020.12.5 | 143 KB | ################################################################################ | 100%
cmake-3.19.3 | 14.0 MB | ################################################################################ | 100%
libgfortran5-9.3.0 | 2.0 MB | ################################################################################ | 100%
c-ares-1.17.1 | 111 KB | ################################################################################ | 100%
numpy-1.19.5 | 5.3 MB | ################################################################################ | 100%
libblas-3.9.0 | 11 KB | ################################################################################ | 100%
python-3.7.9 | 57.3 MB | ################################################################################ | 100%
boost-cpp-1.74.0 | 16.3 MB | ################################################################################ | 100%
setuptools-49.6.0 | 947 KB | ################################################################################ | 100%
boost-1.74.0 | 335 KB | ################################################################################ | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate wgd
#
# To deactivate an active environment, use
#
# $ conda deactivate
#----------------------------------------------------- set uo wgd
(wgd) ➜ Tools git:(master) ✗ git clone https://github.com/arzwa/wgd.git
(wgd) ➜ Tools git:(master) ✗ cd wgd
(wgd) ➜ wgd git:(master) ls
doc example LICENSE README.md setup.py Singularity wgd wgd_cli.py
(wgd) ➜ wgd git:(master) pip install .
Processing /home/urbe/Tools/wgd
Requirement already satisfied: numpy>=1.16 in /home/urbe/anaconda3/envs/wgd/lib/python3.7/site-packages (from wgd==1.2) (1.19.5)
Collecting bokeh==1.4.0
Using cached bokeh-1.4.0.tar.gz (32.4 MB)
Collecting fastcluster==1.1.25
Downloading fastcluster-1.1.25-cp37-cp37m-manylinux1_x86_64.whl (154 kB)
|████████████████████████████████| 154 kB 5.8 MB/s
Collecting joblib==0.11
Using cached joblib-0.11-py2.py3-none-any.whl (176 kB)
Collecting pandas==0.24.1
Downloading pandas-0.24.1-cp37-cp37m-manylinux1_x86_64.whl (10.1 MB)
|████████████████████████████████| 10.1 MB 29 kB/s
Collecting biopython>=1.75
Using cached biopython-1.78-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB)
Collecting click>=7.0
Using cached click-7.1.2-py2.py3-none-any.whl (82 kB)
Collecting coloredlogs>=10.0
Using cached coloredlogs-15.0-py2.py3-none-any.whl (45 kB)
Collecting ete3>=3.1
Using cached ete3-3.1.2.tar.gz (4.7 MB)
Collecting humanfriendly>=9.1
Using cached humanfriendly-9.1-py2.py3-none-any.whl (86 kB)
Collecting Jinja2>=2.7
Using cached Jinja2-2.11.2-py2.py3-none-any.whl (125 kB)
Collecting MarkupSafe>=0.23
Using cached MarkupSafe-1.1.1-cp37-cp37m-manylinux1_x86_64.whl (27 kB)
Collecting matplotlib>=3.0.2
Downloading matplotlib-3.3.3-cp37-cp37m-manylinux1_x86_64.whl (11.6 MB)
|████████████████████████████████| 11.6 MB 29 kB/s
Collecting cycler>=0.10
Using cached cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
Collecting kiwisolver>=1.0.1
Downloading kiwisolver-1.3.1-cp37-cp37m-manylinux1_x86_64.whl (1.1 MB)
|████████████████████████████████| 1.1 MB 68.0 MB/s
Collecting packaging>=16.8
Using cached packaging-20.8-py2.py3-none-any.whl (39 kB)
Collecting pillow>=4.0
Downloading Pillow-8.1.0-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB)
|████████████████████████████████| 2.2 MB 53.5 MB/s
Collecting plumbum>=1.6.7
Using cached plumbum-1.6.9-py2.py3-none-any.whl (115 kB)
Collecting progressbar2>=3.39
Using cached progressbar2-3.53.1-py2.py3-none-any.whl (25 kB)
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3
Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
Collecting python-dateutil>=2.1
Using cached python_dateutil-2.8.1-py2.py3-none-any.whl (227 kB)
Collecting python-utils>=2.3.0
Downloading python_utils-2.5.1-py2.py3-none-any.whl (13 kB)
Collecting pytz>=2011k
Downloading pytz-2020.5-py2.py3-none-any.whl (510 kB)
|████████████████████████████████| 510 kB 38.1 MB/s
Collecting PyYAML>=3.10
Using cached PyYAML-5.3.1.tar.gz (269 kB)
Collecting scipy>=1.2
Downloading scipy-1.6.0-cp37-cp37m-manylinux1_x86_64.whl (27.4 MB)
|████████████████████████████████| 27.4 MB 2.0 kB/s
Collecting seaborn>=0.9.0
Using cached seaborn-0.11.1-py3-none-any.whl (285 kB)
Collecting six>=1.5.2
Using cached six-1.15.0-py2.py3-none-any.whl (10 kB)
Collecting tornado>=4.3
Downloading tornado-6.1-cp37-cp37m-manylinux2010_x86_64.whl (428 kB)
|████████████████████████████████| 428 kB 61.8 MB/s
Collecting sklearn
Using cached sklearn-0.0.tar.gz (1.1 kB)
Collecting scikit-learn
Downloading scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl (22.3 MB)
|████████████████████████████████| 22.3 MB 6.0 kB/s
Collecting threadpoolctl>=2.0.0
Using cached threadpoolctl-2.1.0-py3-none-any.whl (12 kB)
Building wheels for collected packages: wgd, bokeh, ete3, PyYAML, sklearn
Building wheel for wgd (setup.py) ... done
Created wheel for wgd: filename=wgd-1.2-py3-none-any.whl size=75291 sha256=56a7a19b3f4e535897038e8297166a640a7a6a7fdfeb89f5afde4aaa0208ae67
Stored in directory: /tmp/pip-ephem-wheel-cache-29m8tx5i/wheels/54/f3/0c/285aa1e33c52ac42d7996c0170a686e47362e33f012b2b3669
Building wheel for bokeh (setup.py) ... done
Created wheel for bokeh: filename=bokeh-1.4.0-py3-none-any.whl size=23689200 sha256=7daa115fd1b052d429abb6c7082cbbb96defc81716da99ce873760cedf0dbe6f
Stored in directory: /home/urbe/.cache/pip/wheels/49/8c/d1/6b8e1f57e542671673cb3d2faee1a9eccb36be2c08a3915498
Building wheel for ete3 (setup.py) ... done
Created wheel for ete3: filename=ete3-3.1.2-py3-none-any.whl size=2272998 sha256=4f8c179d7e30d22661fff06e2be08125d837dcff31d4eac36dfb206639ce693f
Stored in directory: /home/urbe/.cache/pip/wheels/17/fd/e2/6ac384d8c2484789304657dde01b96d7ab83f4f1dd96d266df
Building wheel for PyYAML (setup.py) ... done
Created wheel for PyYAML: filename=PyYAML-5.3.1-cp37-cp37m-linux_x86_64.whl size=44620 sha256=89175438317c730e5db0088255ca2f5a9745368487ed0fd0c7dbf644774c45c0
Stored in directory: /home/urbe/.cache/pip/wheels/5e/03/1e/e1e954795d6f35dfc7b637fe2277bff021303bd9570ecea653
Building wheel for sklearn (setup.py) ... done
Created wheel for sklearn: filename=sklearn-0.0-py2.py3-none-any.whl size=1316 sha256=4e2eed235501a23fa4cb58a4faef00b3c824d88a5a6d6b7478d45bdfd09bad6c
Stored in directory: /home/urbe/.cache/pip/wheels/46/ef/c3/157e41f5ee1372d1be90b09f74f82b10e391eaacca8f22d33e
Successfully built wgd bokeh ete3 PyYAML sklearn
Installing collected packages: six, threadpoolctl, scipy, pytz, python-dateutil, pyparsing, pillow, MarkupSafe, kiwisolver, joblib, cycler, tornado, scikit-learn, PyYAML, python-utils, pandas, packaging, matplotlib, Jinja2, humanfriendly, sklearn, seaborn, progressbar2, plumbum, fastcluster, ete3, coloredlogs, click, bokeh, biopython, wgd
Successfully installed Jinja2-2.11.2 MarkupSafe-1.1.1 PyYAML-5.3.1 biopython-1.78 bokeh-1.4.0 click-7.1.2 coloredlogs-15.0 cycler-0.10.0 ete3-3.1.2 fastcluster-1.1.25 humanfriendly-9.1 joblib-0.11 kiwisolver-1.3.1 matplotlib-3.3.3 packaging-20.8 pandas-0.24.1 pillow-8.1.0 plumbum-1.6.9 progressbar2-3.53.1 pyparsing-2.4.7 python-dateutil-2.8.1 python-utils-2.5.1 pytz-2020.5 scikit-learn-0.24.0 scipy-1.6.0 seaborn-0.11.1 six-1.15.0 sklearn-0.0 threadpoolctl-2.1.0 tornado-6.1 wgd-1.2
(wgd) ➜ wgd git:(master) wgd
zsh: correct 'wgd' to 'gd' [nyae]? n
Usage: wgd [OPTIONS] COMMAND [ARGS]...
Welcome to the wgd command line interface!
_______
\ ___ `'.
_ _ .--./) ' |--.\ \
/\ \\ ///.''\\ | | \ '
`\\ //\\ //| | | | | | | '
\`// \'/ \`-' / | | | |
\| |/ /("'` | | ' .'
' \ '---. | |___.' /'
/'""'.\ /_______.'/
|| ||\_______|/
\'. __//
`'---'
wgd Copyright (C) 2018 Arthur Zwaenepoel
This program comes with ABSOLUTELY NO WARRANTY;
This is free software, and you are welcome to redistribute it
under certain conditions;
Contact: arzwa@psb.vib-ugent.be
Options:
-v, --verbosity [info|debug] Verbosity level, default = info.
-l, --logfile TEXT File to write logs to (optional)
--version Print version number
-h, --help Show this message and exit.
Commands:
dmd All-vs.-all diamond blastp + MCL clustering.
kde Fit a KDE to a Ks distribution.
ksd Ks distribution construction.
mcl All-vs.-all blastp + MCL clustering.
mix Mixture modeling of Ks distributions.
pre Check and optionally rename CDS files.
syn Co-linearity analyses.
viz Plot histograms/densities (interactively).
wf1 Standard workflow whole paranome Ks.
wf2 Standard workflow one-vs-one ortholog Ks.