www.atgc-montpellier.fr - LoRDEC is a program to correct sequencing errors in long reads from 3rd generation sequencing with high error rate, and is especially intended for PacBio reads. It uses a hybrid strategy, meaning that it uses two sets of reads: the reference read...
ratt.sourceforge.net - RATT is software to transfer annotation from a reference (annotated) genome to an unannotated query genome.
It was first developed to transfer annotations between different genome assembly versions. However, it can also transfer annotations between...
sc932.github.io - Assembly Likelihood Evaluation (ALE) framework that overcomes these limitations, systematically evaluating the accuracy of an assembly in a reference-independent manner using rigorous statistical methods. This framework is comprehensive, and...
The genome assemblers generally take a file of short sequence reads and a file of quality-value as the input. Since the quality-value file for the high throughput short reads is usually highly memory-intensive, only a few assemblers, best suited for...
github.com - Flye is a de novo assembler for long and noisy reads, such as those produced by PacBio and Oxford Nanopore Technologies. The algorithm uses an A-Bruijn graph to find the overlaps between reads and does not require them to be error-corrected. After...
kissplice.prabi.fr - KisSplice is a software that enables to analyse RNA-seq data with or without a reference genome. It is an exact local transcriptome assembler that allows to identify SNPs, indels and alternative splicing events. It can deal with an arbitrary number...
crossmap.sourceforge.net - CrossMap is a program for convenient conversion of genome coordinates (or annotation files) between different assemblies (such as Human hg18 (NCBI36) <> hg19 (GRCh37), Mouse mm9 (MGSCv37) <> mm10...
urgi.versailles.inra.fr - We advise to run first the TEdenovo pipeline but it is not compulsory. We suppose you begin by running the TEannot pipeline on the example provided in the directory "db/" rather than directly on your own genomic sequences. Thus, from now on, the...
github.com - A probabilistic framework for structural variant discovery.
Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. 2014. "LUMPY: a Probabilistic Framework for Structural Variant Discovery." Genome Biology 15 (6):...