sourceforge.net - Metassembler combines multiple whole genome de novo assemblies into a combined consensus assembly using the best segments of the individual assemblies.
Genome assembly projects typically run multiple algorithms in an attempt to find the single best...
github.com - EAGLER is a scaffolding tool for long reads. The scaffolder takes as input a draft genome created by any NGS assembler and a set of long reads. The long reads are used to extend the contigs present in the NGS draft and possibly join overlapping...
github.com - Software package for signal-level analysis of Oxford Nanopore sequencing data. Nanopolish can calculate an improved consensus sequence for a draft genome assembly, detect base modifications, call SNPs and indels with respect to a reference genome...
github.com - MitoZ is a Python3-based toolkit which aims to automatically filter pair-end raw data (fastq files), assemble genome, search for mitogenome sequences from the genome assembly result, annotate mitogenome (genbank file as result), and mitogenome...
If we only had Illumina reads, we could also assemble these using the tool Spades.
You can try this here, or try it later on your own data.
Get data
We will use the same Illumina data as we used above:
illumina_R1.fastq.gz: the Illumina...
There are numerous genome assembly tools available, each with its strengths and weaknesses. Here is a list of some widely used genome assembly tools as of my last update in September 2021:
SPAdes: An assembler specifically designed for...
View full lesson: http://ed.ted.com/lessons/how-to-sequence-the-human-genome-mark-j-kiel
Your genome, every human's genome, consists of a unique DNA sequence of A's, T's, C's and G's that tell your cells how to operate. Thanks to technological...
Suhas Rao and Miriam Huntley (of the Aiden Lab) describe a 3D map of the human genome at kilobase resolution, revealing the principles of chromatin looping. Guest Origami Folding: Sarah Nyquist.
Suhas S.P. Rao*, Miriam H. Huntley*, Neva C. Durand,...
The bakers yeast, Saccharomyces cerevisiae is an ideal model organism to understand mechanisms of meiotic chromosome segregation. In S. cerevisiae and in mammals, the majority of meiotic crossovers are formed through a highly conserved MSH4p-MSH5p,...
www.yandell-lab.org - MAKER is a portable and easily configurable genome annotation pipeline.Its purpose is to allow smaller eukaryotic and prokaryotic genome projects to independently annotate their genomes and to create genome databases. MAKER identifies repeats,...