amos.sourceforge.net - We present the first collection of tools aimed at automated genome assembly validation. This work formalizes several mechanisms for detecting mis-assemblies, and describes their implementation in our automated validation pipeline,...
github.com - Flye is a de novo assembler for single molecule sequencing reads, such as those produced by PacBio and Oxford Nanopore Technologies. It is designed for a wide range of datasets, from small bacterial projects to large mammalian-scale assemblies. The...
github.com - For a detailed description of the pipeline and how it integrates with other tools designed by the Aiden Lab see Genome Assembly Cookbook on http://aidenlab.org/assembly.
For the original version of the pipeline and to reproduce the...
github.com - RefKA, a reference-based approach for long read genome assembly. This approach relies on breaking up a closely related reference genome into bins, aligning k-mers unique to each bin with PacBio reads, and then assembling each bin in parallel...
bioen-compbio.bioen.illinois.edu - Rreference-Assisted Chromosome Assembly (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end...
github.com - Canu is a fork of the Celera Assembler designed for high-noise single-molecule sequencing (such as the PacBio RSII or Oxford Nanopore MinION). The software is currently alpha level, feel free to use and report issues encountered.
Canu is...
github.com - Requirements:
velvet (velveth velvetg should be in your PATH)
R (with Sweave)
pdflatex (usually part of TeTeX)
ggplot2 (from R prompt type install.packages("ggplot2","proto","xtable"))
Perl
Optional:
BLAT or BLAST (to generate...
alan.cs.gsu.edu - caffMatch is a novel scaffolding tool based on Maximum-Weight Matching able to produce high-quality scaffolds from NGS data (reads and contigs). The tool is written in Python 2.7. It also includes a bash script wrapper that calls aligner in case one...
sco.h-its.org - PEAR is an ultrafast, memory-efficient and highly accurate pair-end read merger. It is fully parallelized and can run with as low as just a few kilobytes of memory.
PEAR evaluates all possible paired-end read overlaps and without requiring the...