http://genomeribbon.com/ - Visualization has played an extremely important role in the current genomic revolution to inspect and understand variants, expression patterns, evolutionary changes, and a number of other relationships. However, most of the information in...
github.com - MitoZ is a Python3-based toolkit which aims to automatically filter pair-end raw data (fastq files), assemble genome, search for mitogenome sequences from the genome assembly result, annotate mitogenome (genbank file as result), and mitogenome...
eforge.cs.ucl.ac.uk - The eFORGE tool provides a method to view the tissue specific regulatory component of a set of EWAS DMPs. eFORGE analysis takes a set of DMPs, such as those hits above genome-wide significance threshold in an EWAS study, and analyses whether there...
github.com - Collection of Python libraries to parse bioinformatics files, or perform computation related to assembly, annotation, and comparative genomics.
https://github.com/tanghaibao/jcvi
More at https://github.com/tanghaibao/jcvi/wiki
github.com - HASLR, a hybrid assembler which uses both second and third generation sequencing reads to efficiently generate accurate genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of...
github.com - Despite marked recent improvements in long-read sequencing technology, the assembly of diploid genomes remains a difficult task. A major obstacle is distinguishing between alternative contigs that represent highly heterozygous regions. If primary...
github.com - HapSolo, that identifies secondary contigs and defines a primary assembly based on multiple pairwise contig alignment metrics. HapSolo evaluates candidate primary assemblies using BUSCO scores and then distinguishes among candidate assemblies using...
github.com - MitoHiFi v3.2 is a python pipeline distributed under MIT License !
MitoHiFi was first developed to assemble the mitogenomes for a wide range of species in the Darwin Tree of Life Project...
journal.embnet.org - Next Generation Sequencing has totally changed genomics: we are able to produce huge amounts of data at an incredibly low cost compared to Sanger sequencing. Despite this, some old problems have become even more difficult, de novo assembly being on...