rrwick.github.io - Bandage (a Bioinformatics Application for Navigating De novo Assembly Graphs Easily) is a tool for visualizing assembly graphs with connections. Users can zoom in to specific areas of the graph and interact with it by moving nodes,...
https://dfast.nig.ac.jp/ - We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7,000 jobs have been processed since its...
github.com - Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are...
github.com - GRSR is a Tool for Deriving Genome Rearrangement Scenarios for Multiple Uni-chromosomal Genomes. This tool will do the following steps:
Step 1. Run mugsy to get multiple sequence alignment results.
Step 2 & 3. Extraction of the Coordinates...
github.com - Cogent is a tool that identifies gene families and reconstructs the coding genome using high-quality transcriptome data without a reference genome, and can be used to check assemblies for the presence of these known coding...
kissplice.prabi.fr - KisSplice is a software that enables to analyse RNA-seq data with or without a reference genome. It is an exact local transcriptome assembler that allows to identify SNPs, indels and alternative splicing events. It can deal with an arbitrary number...
crossmap.sourceforge.net - CrossMap is a program for convenient conversion of genome coordinates (or annotation files) between different assemblies (such as Human hg18 (NCBI36) <> hg19 (GRCh37), Mouse mm9 (MGSCv37) <> mm10...
urgi.versailles.inra.fr - We advise to run first the TEdenovo pipeline but it is not compulsory. We suppose you begin by running the TEannot pipeline on the example provided in the directory "db/" rather than directly on your own genomic sequences. Thus, from now on, the...
github.com - A probabilistic framework for structural variant discovery.
Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. 2014. "LUMPY: a Probabilistic Framework for Structural Variant Discovery." Genome Biology 15 (6):...