gite.lirmm.fr - An error correction method that uses long reads only. The method consists of two phases: first, we use an iterative alignment-free correction method based on de Bruijn graphs with increasing length of k-mers, and second, the corrected reads are...
github.com - nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where...
github.com - lordFAST is a sensitive tool for mapping long reads with high error rates. lordFAST is specially designed for aligning reads from PacBio sequencing technology but provides the user the ability to change alignment parameters depending on the reads...
github.com - Flye is a de novo assembler for single molecule sequencing reads, such as those produced by PacBio and Oxford Nanopore Technologies. It is designed for a wide range of datasets, from small bacterial projects to large mammalian-scale assemblies. The...
github.com - MitoZ is a Python3-based toolkit which aims to automatically filter pair-end raw data (fastq files), assemble genome, search for mitogenome sequences from the genome assembly result, annotate mitogenome (genbank file as result), and mitogenome...
github.com - an integrated bioinformatics pipeline for the detection of TE insertions in whole-genome shotgun data, called McClintock (https://github.com/bergmanlab/mcclintock), which automatically runs and standardizes output for multiple TE detection methods....
github.com - Tool for plotting sequencing data along genomic coordinates.
FIGENO is a
FIGure
GENerator
for GENOmics
With figeno, you can plot various types of sequencing data along genomic coordinates. Video...
Like in case of plant genomes where nature of genome is too complex and huge in size to accomplish complete de novo assembly by current sequencing technology. What would be alternate solution? Can we live in reference free world?
There was a lot of buzz about Oxford Nanopore Technologies® is developing the GridION™ system and miniaturised MinION™ device. These are a new generation of electronic molecular analysis system for use in scientific research,...