github.com - ARCS requires two input files:
Draft assembly fasta file
Interleaved linked reads file (Barcode sequence expected in the BX tag of the read header or in the form "@readname_barcode" ; Run Long Ranger basic on raw chromium reads to...
github.com - Flye is a de novo assembler for single molecule sequencing reads, such as those produced by PacBio and Oxford Nanopore Technologies. It is designed for a wide range of datasets, from small bacterial projects to large mammalian-scale assemblies. The...
github.com - HASLR is a tool for rapid genome assembly of long sequencing reads. HASLR is a hybrid tool which means it requires long reads generated by Third Generation Sequencing technologies (such as PacBio or Oxford Nanopore) together with Next Generation...
Applications are invited for the following post of Junior Research Fellow (temporary position coterminous with the project) under DBT funded research project on ““Understanding the functions of α1β1γ1/α2β1γ1 selective AMPK Modulators in dissecting...
ftp.ncbi.nih.gov - Now a days there are a lots of genomics databases available around the world. This bookmark is created to provide all links in one place ...
ftp://ftp.ncbi.nih.gov/genomes/
https://hgdownload.soe.ucsc.edu/downloads.html
github.com - HASLR, a hybrid assembler which uses both second and third generation sequencing reads to efficiently generate accurate genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of...
www.cs.ucf.edu - mixtureS that can de novo identify bacterial strains from shotgun reads of a clonal or metagenomic sample, without prior knowledge about the strains and their variations. Tested on 243 simulated datasets and 195 experimental datasets, mixtureS...
journals.plos.org - Illumina Sequencing data can provide high coverage of a genome by relatively short (most often 100 bp to 150 bp) reads at a low cost. Even with low (advertised 1%) error rate, 100 × coverage Illumina data on average has an error in some read...