www.ncbi.nlm.nih.gov - The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny,...
The bakers yeast, Saccharomyces cerevisiae is an ideal model organism to understand mechanisms of meiotic chromosome segregation. In S. cerevisiae and in mammals, the majority of meiotic crossovers are formed through a highly conserved MSH4p-MSH5p,...
TheLab seek to understand the genetic factors contributing to genomic variation and phenotypic diversity. To this end, we employ molecular and bioinformatic tools to study evolutionary processes at the level of populations, both experimental and...
www.broadinstitute.org - As the number of sequence and annotated genomes grows larger, the need to understand, compare, and contrast the data becomes increasingly important. Using the power of the human visual system to detect trends and spot outliers is necessary in such...
kissplice.prabi.fr - KisSplice is a software that enables to analyse RNA-seq data with or without a reference genome. It is an exact local transcriptome assembler that allows to identify SNPs, indels and alternative splicing events. It can deal with an arbitrary number...
sourceforge.net - _A5-miseq_ is a pipeline for assembling DNA sequence data generated on the Illumina sequencing platform. This README will take you through the steps necessary for running _A5-miseq_.
Point to note:
There are many situations where A5-miseq is not...
www.cbcb.umd.edu - VALET is a pipeline for performing de novo validation of metagenomic assemblies. VALET checks a number of properties that should hold true for a correct assembly (e.g., mate-pairs are aligned at the correct distance from each other in the...
www.repeatmasker.org - RepeatModeler is a de-novo repeat family identification and modeling package. At the heart of RepeatModeler are two de-novo repeat finding programs ( RECON and RepeatScout ) which employ complementary computational methods for identifying repeat...
github.com - A probabilistic framework for structural variant discovery.
Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. 2014. "LUMPY: a Probabilistic Framework for Structural Variant Discovery." Genome Biology 15 (6):...